На правах рукописи

Mel -

Ушакова Екатерина Владимировна

Спекл-корреляционная и флуоресцентная диагностика эволюционирующих полимерных пен: развитие физических принципов и инструментальная реализация

1.3.6 – Оптика

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Саратов – 2024

Работа выполнена на кафедре «Физика» федерального государственного бюджетного образовательного учреждения высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.».

Научный руководитель: Зимняков Дмитрий Александрович, доктор физико-математических наук, профессор, заведующий кафедрой «Физика» СГТУ имени Гагарина Ю.А..

Официальные оппоненты:

1. Захаров Валерий Павлович, доктор физико-математических наук, профессор, заведующий кафедрой лазерных и биотехнических систем федерального государственного автономного образовательного учреждения высшего образования «Самарский национальный исследовательский университет имени академика С.П. Королева» (Самарский университет им. Королева).

2. Кириллин Михаил Юрьевич кандидат физико-математических наук, старший научный сотрудник отдела радиофизических методов в медицине лаборатории биофотоники федерального государственного бюджетного научного учреждения «Федеральный исследовательский центр Институт прикладной физики им. А.В. Гапонова-Грехова Российской академии наук».

Ведущая организация: Федеральное государственное автономное образовательное учреждение высшего образования «Волгоградский государственный университет» (ВолГУ).

Защита состоится 24 октября 2024 г. в 16:00 часов на заседании диссертационного совета 24.2.392.06, созданного на базе ФГБОУ ВО «СГУ имени Н.Г. Чернышевского» по адресу: 410012, г. Саратов, ул. Астраханская, 83, корпус 11, ауд. 515. С диссертацией можно ознакомиться в библиотеке Зональной научной библиотеке им. В.А. Артисевич ФГБОУ ВО «СГУ имени Н.Г. Чернышевского» и на официальном сайте ФГБОУ ВО «СГУ имени Н.Г. Чернышевского» по электронному адресу:

https://www.sgu.ru/research/dissertation-council/24-2-392-6/kandidatskayadissertaciya-ushakovoy-ekateriny

Автореферат разослан « » 2024 г.

Ученый секретарь диссертационного совета 24.2.392.06 д.ф.-м.н., доцент

Генина Э. А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Морфофункциональная диагностика объектов со сложной структурой и динамикой с использованием оптического излучения является одним из наиболее востребованных подходов в современном материаловедении и биомедицине. Среди многообразия оптических и лазерных методов, позволяющих получить информацию о зондируемых объектах на пространственных масштабах порядка длины волны зондирующего излучения следует выделить группу методов, основанных на корреляционном анализе флуктуаций интенсивности спеклмодулированного лазерного излучения, многократно рассеянного нестационарными случайно-неоднородными средами. Динамическое рассеяние лазерного излучения случайно-неоднородными средами в однократном режиме используется для структурного анализа подобных систем начиная с семидесятых годов прошлого века. За прошедшие пятьдесят лет созданы инструментальнометодические основы этого подхода, превратившая размерный анализ дисперсных систем различной природы в достаточно рутинную и хорошо обоснованную процедуру [1].

Первые работы по использованию эффекта динамического рассеяния когерентного излучения для анализа микроскопической динамики многократно рассеивающих сред были выполнены в середине восьмидесятых годов прошлого века П.-Э. Вольфом, Дж. Марэ, Д. Вейтцем, Д. Пайном и другими исследователями [2, 3]. Дальнейшее развитие этого направления с конца восьмидесятых годов XX века по настоящее время связано с именами таких зарубежных и российских ученых, как Д. Дуриан, Д. Боас, А. Йод, Ф. Шеффолд, В.Л. Кузьмин, В.П. Романов, С.Е. Скипетров, В.В. Тучин, Д.А. Зимняков, И.В. Меглинский, А.П. Владимиров и др. В течение этого периода функциональные возможности корреляционного анализа спекл-модулированного многократно рассеянного света были распространены на диагностику неэргодических систем [4, 5], визуализацию макроскопических динамических неоднородностей в многократно рассеивающих средах [6], анализ структурных перестроек в коллоидных системах [7, 8] и другие прикладные и фундаментальные проблемы когерентнооптической диагностики в материаловедении и биомедицине [9-12].

Несмотря на достижения в области спекл-корреляционной диагностики случайно-неоднородных сред со сложной структурой и динамикой, в данной области существуют проблемы, решение которых позволило бы существенно расширить область применений анализа пространственно-временных флуктуаций многократно рассеянных спекл-полей. Одной из проблем является необходимость наличия априорной информации о типе микроскопической динамики рассеивателей в среде: может ли движение частиц на пространственном масштабе порядка длины волны быть классифицировано как обобщенная броуновская динамика, либо как трансляционная (потоковая) динамика, либо как комбинация этих двух типов динамики с неизвестным соотношением между ними? Отсутствие этой информации не позволяет получить адекватное решение обратной задачи определения микроскопической подвижности рассеивающих центров зондируемых применяемых В средах, на основе В спеклкорреляционном анализе оценок времени корреляции флуктуаций интенсивности рассеянного лазерного излучения.

Другая проблема обусловлена ограничением применимости подобных оценок случаем зондирования рассеивающих систем со слабой нестационарностью, в которых изменениями усредненных по ансамблю характеристик микроскопической подвижности рассеивающих центров в процессе регистрации флуктуаций интенсивности рассеянного света можно пренебречь. Применение традиционных подходов к анализу пространственно-временных флуктуаций многократно рассеянного лазерного излучения на основе оценок времени корреляции флуктуаций интенсивности в случае существенно нестационарных сред с быстрым («взрывным») характером структурных перестроек при отсутствии априорной информации о типе динамики рассеивающих центров на различных стадиях эволюции среды будет приводить к некорректным результатам.

Типичным примером подобных существенно нестационарных многократно рассеивающих сред с неопределенным типом динамики рассеивателей являются полимерные пены, синтезируемые с применением сверхкритических флюидных технологий. Необходимо учитывать широкое применение полимерных пен в различных областях современной науки и техники, начиная от создания тканезамещающих структур (скаффолдов) в биотехнологиях и заканчивая микроэлектроникой, а также отсутствие методов анализа структурных изменений синтезируемых сред непосредственно в процессе вспенивания. Соответственно, расширение области применения диагностических методов на основе эффекта многократного динамического рассеяния лазерного излучения на подобные объекты является актуальной задачей. Существенным дополнением к решению этой задачи в части анализа особенностей переноса зондирующего излучения в пеноподобных средах может быть исследование флуоресцентного отклика насыщенных флуорофорами сред при их лазерной накачке в полосах поглощения флуорофоров.

В связи с этим **целью** работы явились разработка, теоретическое обоснование и экспериментальная верификация новых оптических методов зондирования существенно нестационарных случайно-неоднородных сред со сложной динамикой и структурой, каковыми являются полимерные пены, синтезируемые путем сверхкритического флюидного вспенивания, с использованием эффектов многократного динамического рассеяния лазерного излучения и возбуждения индуцированной составляющей флуоресцентного отклика при лазерной накачке насыщенных флуорофором пен.

Для достижения поставленной цели решались следующие задачи:

1. Разработка метода анализа динамических спекл-структур, формируемых при многократном рассеянии лазерного излучения существенно-нестационарными многократно рассеивающими средами, с использованием синтеза пространственно-временных спекл-текстур (ПВСТ) и выборочных оценок среднего времени жизни динамических спеклов на различных стадиях эволюции зондируемой среды. 2. Теоретический анализ взаимосвязи между средним временем жизни динамических спеклов и параметрами микроскопической подвижности рассеивающих центров в эволюционирующей среде; обоснование инвариантности среднего времени жизни динамических спеклов по отношению к типу микроскопической динамики рассеивающих центров.

3. Разработка феноменологической модели многократного рассеяния зондирующего лазерного излучения в объеме эволюционирующей пены; статистическое моделирование функций плотности вероятности оптических путей зондирующего лазерного излучения в расширяющейся полимерной пене.

4. Разработка методологии и инструментального обеспечения мониторинга процесса сверхкритического флюидного вспенивания полимерных пен с использованием метода синтеза ПВСТ; установление взаимосвязи между макроскопической динамикой расширения пены и выборочными значениями среднего времени жизни динамических спеклов для различных условий вспенивания; сопоставление экспериментальных и модельных данных.

5. Разработка и экспериментальная верификация метода флуоресцентного зондирования насыщенных флуорофором полимерных пен на основе анализа эффективности возбуждения индуцированной составляющей флуоресценции с ростом интенсивности накачки.

Научная новизна полученных результатов

1. Впервые разработан и верифицирован в экспериментах метод анализа динамики межфазных границ в эволюционирующих полимерных пенах на основе оценок среднего времени жизни динамических спеклов в поле многократно рассеянного лазерного излучения, отображаемого в форме ПВСТ.

2. В рамках разработанной феноменологической модели многократного рассеяния лазерного излучения в объеме расширяющейся пены впервые установлена взаимосвязь между временем жизни динамических спеклов в поле рассеянного лазерного света и макроскопическими параметрами, характеризующими динамику расширения (текущими значениями объема пены и его первой производной по времени).

3. Впервые рассмотрен и обоснован эффект дополнительного формирования зародышей пор в полимерной матрице на стадии интенсивного квазиадиабатического расширения полимерной пены, приводящий к возрастанию кратности рассеяния лазерного излучения в объеме пены по сравнению с медленным квази-изотермическим расширением. В наблюдаемых ПВСТ появление дополнительных рассеивателей проявляется в уменьшении среднего наклона треков, соответствующих отдельным спеклам, к временной оси (доминирование режима «кипения» спеклов над трансляционным движением).

4. Впервые установлено существенное влияние квазиволноводного режима распространения лазерного излучения накачки и флуоресцентного отклика в стенках пор, приводящего к возрастанию среднего времени жизни квантов флуоресценции в объеме насыщенных флуорофором полимерных пенах, на эффективность возбуждения индуцированной составляющей флуоресценции при лазерной накачке в полосе поглощения флуорофора.

Методология и методы исследования

При моделировании переноса зондирующего лазерного излучения в эволюционирующих пенах и определении временных параметров флуктуаций рассеянного спекл-модулированного излучения применялся гибридный подход, в котором с использованием Монте-Карло моделирования рассчитывались функции плотности вероятности путей распространения парциальных составляющих рассеянного поля в зондируемых средах. Статистические моменты интенсивности рассеянного поля рассчитывались как интегральные преобразования полученных функций плотности вероятности. Исследуемые полимерные пены синтезировались из гранулированного полилактида в многооконном реакторе высокого давления с применением технологии пластификации/вспенивания при сбросе давления в атмосфере сверхкритического диоксида углерода. Зондирование эволюционирующих пен и регистрация спекл-модулированного рассеянного света осуществлялось через окна реактора. Флуоресцентная диагностика полилактидных пен с добавками флуорофора (родамина 6Ж) осуществлялась путем анализа спектров флуоресценции синтезированных образцов при импульсно-периодической накачке лазерным излучением с длиной волны 532 нм. Моделирование, синтез пространственно-временных спекл-текстур на основе полученных видеоданных о рассеянном спекл-модулированном излучении на различных стадиях эксперимента, обработка и анализ полученных теоретических и экспериментальных данных осуществлялись с использованием оригинального программного обеспечения в средах программирования С++ и MatLab.

Практическая значимость полученных результатов

1. Разработанный и верифицированный метод анализа микроскопической динамики рассеивающих центров в нестационарных средах на основе синтеза ПВСТ и оценок выборочных значений времени жизни спеклов по синтезированным спекл-структурам применим для мониторинга процессов формирования структуры различных многофазных систем при отсутствии априорной информации о типе микроскопической динамики рассеивателей.

2. Разработанный метод анализа эффективности возбуждения индуцированной составляющей флуоресценции в случайно-неоднородных флуоресцирующих системах на основе анализа зависимостей полуширины спектра флуоресцентного отклика от интенсивности лазерной накачки может быть использован для исследования фундаментальных особенностей переноса излучения в средах со сложной структурой, приводящих к возрастанию среднего времени нахождения квантов флуоресценции в среде.

3. Разработанный комплекс лабораторных методов для анализа структуры полимерных пен на различных стадиях их формирования и феноменологических моделей для интерпретации получаемых данных может быть применен в синтезе пеноподобных материалов с оптическим контролем структуры в различных областях современной науки и технологий.

4. Результаты исследований применены в учебном процессе при подготовке бакалавров и магистров по направлению «Техническая физика», а также аспирантов, обучающихся по научным специальностям «Оптика» и «Лазерная физика» в части модернизации специальных курсов лекций и постановки новых учебноисследовательских работ в специальных практикумах.

Достоверность полученных результатов

Достоверность представленных в диссертации результатов и сделанных выводов подтверждается использованием современного научноисследовательского оборудования и программного обеспечения, применением апробированных методик моделирования и экспериментальных исследований, соответствием полученных результатов данным, полученным другими исследовательскими группами, а также их опубликованием в рецензируемых российских и международных научных журналах.

На защиту выносятся следующие результаты и положения:

1. Разработанный метод синтеза и анализа ПВСТ с использованием выборочных оценок усредненного по ансамблю динамических спеклов времени их жизни позволяет осуществлять спекл-корреляционную диагностику существенно нестационарных рассеивающих систем, для которых традиционные методы спекл-коррелометрии неприменимы.

2. Среднее время жизни $\langle \tau_{h} \rangle$ динамических спеклов, формируемых при многократном рассеянии лазерного излучения в нестационарных средах, инвариантно по отношению к типу микроскопической динамики рассеивателей и определяется условием $\langle (\Delta r(\langle \tau_{h} \rangle))^{2} \rangle \approx K_{ih} \{\lambda^{2}/\langle N_{sc} \rangle\}$, где $\langle (\Delta r(\langle \tau_{h} \rangle))^{2} \rangle$ - средний квадрат смещения рассеивающих центров за время $\langle \tau_{h} \rangle$, λ - длина волны излучения, $\langle N_{sc} \rangle$ - среднее число актов рассеяния излучения в среде, K_{ih} - безразмерный коэффициент, определяемый порогом дискриминации флуктуаций интенсивности при оценке $\langle \tau_{h} \rangle$.

3. Взаимосвязь между средним временем жизни $\langle \tau_{lt} \rangle$ динамических спеклов при многократном рассеянии лазерного излучения в эволюционирующих полимерных пенах и параметром $V_f^{2/3} (V'_f)^{-1}$, характеризующим динамику расширения пены (V_f - текущий объем пены), описывается степенной зависимостью $\langle \tau_{lt} \rangle \propto \left\{ V_f^{2/3} (V'_f)^{-1} \right\}^{\alpha}$. Показатель α близок к 1 в случае медленного квазиизотермического расширения и убывает до \approx 0.6 в случае быстрого квази-

адиабатического расширения. Уменьшение показателя обусловлено эффектом формирования новых пор в полимерной матрице в процессе расширения.

4. Переход от режима спонтанной флуоресценции к стохастической лазерной генерации в накачиваемых лазерным излучением системах «полимерная пена + флуорофор» контролируется эффектом квазиволноводного распространения излучения накачки и флуоресценции в стенках пор. Возрастание среднего времени пребывания квантов флуоресценции в объеме насыщенной флуорофором пены как следствие квазиволноводного эффекта приводит к снижению порога

стохастической лазерной генерации по сравнению с ожидаемым для заданной средней концентрации флуорофора в объеме пены.

Апробация работы

Результаты диссертационной работы были представлены на следующих международных и российских конференциях: Saratov Fall Meeting - 2018, -2019, 2020, -2021, -2022 (Саратов, Россия); The XXIII International Scientific Conference of Young Scientists and Specialists (AYSS - 2019) (Дубна, Россия); «Проблемы управления, обработки и передачи информации» (УОПИ-2019) (Саратов, Россия); VI Международная конференция и молодежная школа ИТНТ-2020 (Самара, Россия); XI Scientific and Engineering Conference "Supercritical Fluids: Fundamentals, Technologies, and Innovations" (SCF TEC 2021) (Hoвосибирск, Россия); III Международная молодежная научно-практическая конференция «Арктические исследования: от экстенсивного освоения к комплекс-(Архангельск, Россия); XIII Всероссийская ному развитию» школаконференция молодых учёных имени В.В. Лунина «Сверхкритические флюидные технологии в решении экологических проблем» (Архангельск, Россия); XII Scientific and Engineering Conference "Supercritical Fluids: Fundamentals, Technologies, and Innovations" (SCF TEC 2023) (Тверь, Россия).

Публикации

По материалам диссертации опубликовано 14 работ: 7 статей, входящих в перечень ВАК и базы данных Web of Science, Scopus (из которых 2 статьи Q1); получены 2 свидетельства о регистрации программы для ЭВМ.

Личный вклад автора

Автор принимал непосредственное участие во всех этапах проведенных исследований, начиная от постановки задач и заканчивая обсуждением результатов и подготовкой статей и докладов на конференциях.

Эксперименты по синтезу полилактидных пен с использованием метода многократного динамического рассеяния лазерного излучения для мониторинга эволюции синтезируемой пены и флуоресцентной диагностике синтезированных образцов проводились лично автором. Специальное программное обеспечение для теоретического моделирования динамического рассеяния лазерного излучения в расширяющихся пенах, процессов формирования структуры пены и синтеза пространственно-временных спекл-текстур разработано, верифицировано и использовано в исследованиях лично автором.

Объем и структура диссертации

Работа состоит из введения, четырёх глав, заключения, списка использованных источников и приложений. Основное содержание работы представлено на 115 страницах, в 31 рисунке и в 2 таблицах. Список литературы включает в себя 131 наименование.

Основное содержание диссертационной работы

Во введении дано обоснование актуальности темы исследования, сформулированы цель и основные задачи исследования. Сформулированы пункты научной новизны и практической значимости полученных результатов, представлены основные положения, выносимые на защиту. **Первая глава** посвящена обзору существующих методов синтеза высокопористых полимерных матриц и методов апостериорного анализа структуры и функциональных характеристик подобных матриц, применяемых для создания скаффолдов, используемых в регенеративной медицине и тканевой инженерии.

В разделе 1.1 обсуждается современное состояние в области синтеза и применения пористых полимерных матриц в различных областях современной науки и технологий, начиная от регенеративной медицины и тканевой инженерии и заканчивая электроникой, сенсорикой и каталитической химией.

В разделе 1.2 представлен анализ основных методов, применяемых для характеризации синтезированных полимерных пен в апостериорном режиме; обсуждены основные сложности, ограничивающие возможность диагностики структуры пены непосредственно в процессе синтеза.

В разделе 1.3 рассмотрены особенности оптических свойств пеноподобных материалов как многократно рассеивающих случайно-неоднородных сред. Обсуждены полученные группой Д. Дуриана данные о взаимосвязях структурных характеристик пен (в частности, среднего размера пор и объемной доли конденсированной фазы) с их оптическими характеристиками (транспортной длиной распространения излучения в среде и параметром анизотропии рассеяния). Проведен анализ возможного влияния этих взаимосвязей на процесс рассеяния зондирующего лазерного излучения применительно к решению основных диагностических задач диссертационного исследования.

В разделе 1.4 сформулированы краткие выводы по главе.

Во второй главе представлены результаты разработки и экспериментальной верификации лабораторного оборудования для сверхкритического флюидного (СКФ) синтеза полилактидных пен с возможностью мониторинга процесса вспенивания на основе эффекта многократного динамического рассеяния лазерного излучения в объеме эволюционирующей пены.

Раздел 2.1 посвящен рассмотрению фундаментальных аспектов формирования высокопористых полимерных матриц с использованием технологии пластификации/вспенивания исходного полимера в атмосфере сверхкритического флюидного (СКФ) агента. Вспенивание пластифицированного полимера производится путем сброса давления в системе «полимер/пластифицирующий СКФ агент» по заданному сценарию и включает 3 основные стадии: процесс нуклеации в пластифицированном полимере; процесс интенсивного расширения зародышей пор и формирования структуры пены; процесс стабилизации структуры пены. Обсуждено влияние режима сброса давления на формирование структуры пены (средний размер пор, разброс пор по размерам, фактор расширения пены) и, соответственно, на динамическое рассеяние лазерного излучения в объеме формируемой пены.

В разделе 2.2 представлена и обсуждена схема разработанного лабораторного образца системы сверхкритического флюидного вспенивания полимерных материалов с возможностью регистрации лазерного излучения, многократно рассеянного в объеме формируемой пены (рис. 1). В системе в качестве пластифи-

цирующего/вспенивающего флюидного агента используется диоксид углерода. В рабочей зоне многооконного реактора высокого давления (позиция 5 на рис. 1) давление агента может изменяться в пределах от атмосферного до 25 Мпа и контролируется с точностью не хуже $\pm 0.5\%$. Система обеспечивает установку и поддержание температуры в рабочей зоне реактора в интервале от комнатной температуры до 100° С с погрешностью не хуже ± 0.1 °C. Скорость сброса давления в процессе вспенивания изменяется в пределах от 0.001 до 1 МПа/с и регулируется с помощью прецизионного игольчатого клапана 6.

Анализ динамики расширения пены с использованием эффекта многократного динамического рассеяния лазерного излучения осуществляется путем ввода лазерного излучения с длиной волны 633 нм (источник – гелий-неоновый лазер ГН-5П, позиция 1) через верхнее окно реактора, изготовленное из сапфирового стекла. Регистрация спекл-модулированного лазерного излучения, многократно рассеянного в объеме формируемой пены, осуществляется через одно из боковых окон реактора с помощью быстродействующей КМОП-камеры Optronis CamRecord CR3000 (позиция 2) с объективом. Оптический контроль процесса формирования и расширения пены также осуществляется путем регистрации последовательностей мгновенных изображений расширяющейся пены с использованием КМОП камеры XCAM1080PHB (ToupTec, KHP) (позиция 3) с подсветкой широкополосным источником (галогеновой лампой, позиция 4).

В разделе 2.3 представлены результаты экспериментальной верификации разработанной системы с использованием в качестве вспениваемого материала D,L-полилактида (производитель – Corbion Purac, Нидерланды). В ходе экспериментов установлены новые фундаментальные особенности формирования ансамблей зародышей пор на стадии нуклеации, предшествующей интенсивному формированию пены. К этим результатам относится автомодельный характер роста зародышей и существование «мертвой зоны» в интервале значений начального давления при пластификации от 6,6 МПа до 8,3 МПа (вокруг критической точки CO₂ по давлению). Полученные данные имеют опосредованное отношение к основным результатам работы и защищаемым положениям, однако включены в диссертацию в силу их фундаментального характера и значимости для СКФ технологии вспенивания полимеров.

В разделе 2.4 сформулированы краткие выводы по главе.

Третья глава посвящена теоретическому описанию взаимодействия когерентного излучения с эволюционирующими пенами на стадии их интенсивного развития; моделированию временного отклика формируемых при этом динамических спеклов на структурные изменения в расширяющихся пенах; методическому обоснованию и программно-инструментальной реализации синтеза пространственно-временных спекл-текстур; представлению экспериментальных данных о кинетике формирования полимерных пен, полученных с использованием разработанного метода синтеза спекл-текстур и их интерпретации с использованием разработанных теоретических моделей.

В разделе 3.1 рассмотрен гибридный подход к моделированию временных автокорреляционных функций флуктуаций интенсивности I(t) лазерного излучения, многократно рассеянного нестационарными случайно-неоднородными средами:

Рис. 1. Лабораторная система для синтеза полилактидных пен с одновременной регистрацией многократно рассеянного лазерного излучения и контролем текущего объема расширяющейся пены.

$$\tilde{g}_{2}(t,\tau) = \frac{\left[I(t) - \overline{I(t)}\right] \left[I(t+\tau) - \overline{I(t)}\right]}{\left(\overline{I(t)}\right)^{2}},$$
(1)

где усреднение производится по интервалу выборки (t,t+T), удовлетворяющему условию $T >> \tau$. Для идеальных условий детектирования, когда размер детектора существенно меньше среднего размера спеклов в рассеянном поле, справедливо соотношение:

$$\tilde{g}_{2}(t,\tau) = \left(\int_{0}^{\infty} \exp\left\{-\frac{k_{0}^{2}(\{\Delta r(t,\tau)\}^{2}\}s}{3l^{*}(t)}\right\}\rho(s)ds\right)^{2},$$
(2)

где k_0 - волновое число зондирующего излучения, $\langle \{\Delta r(t,\tau)\}^2 \rangle$ - средний квадрат смещения рассеивающих центров в среде за время τ , $l^*(t)$ - транспортная длина распространения излучения в среде, $\rho(s)$ - функция плотности вероятности путей распространения *s* парциальных составляющих рассеянного поля в среде. В рамках гибридного подхода функция $\rho(s)$ моделируется с помощью метода Монте-Карло для заданной геометрии зондирования (рис. 2, а), а корреляционная функция вычисляется в соответствии с выражением (2). По измеренному в экспериментах времени корреляции τ_c , соответствующему спаду $\tilde{g}_2(t,\tau)$ в *e* раз, восстанавливается значение $\sqrt{\langle \{\Delta r(t,\tau_c)\}^2 \rangle}$, характеризующее усредненную по ансамблю микроскопическую подвижность рассеивающих центров в среде. Этот подход, являющийся основой классической спекл-коррелометрии, применим в случае многократно рассеивающих сред со слабой нестационарностью (когда изменениями $l^*(t)$ и $\langle \{\Delta r(t,\tau)\}^2 \rangle$ в пределах интервала *T* можно пренебречь). Интенсивно расширяющиеся полимерные пены не удовлетворяют данному условию, поскольку по мере увеличения объема пены существенно изме-

няется как транспортная длина $l^*(t)$, так и тип микроскопической динамики рассеивающих центров (межфазных границ в объеме пены) $\langle \{\Delta r(t,\tau)\}^2 \rangle = f(t,\tau)$. Об этом свидетельствуют результаты Монте-Карло моделирования переноса излучения в объеме пены (в частности, зависимость $\langle s \rangle$ от отношения характерного размера пены *L* к l^* , рис. 2, б), иллюстрирующая переход от малократного к диффузионному режиму распространения излучения в объеме пены по мере ее расширения). Выборочные значения $\tilde{g}_2(t,\tau)$, полученные в ходе предварительных экспериментов по синтезу полилактидных пен (рис. 3, а), свидетельствуют о кардинальных изменениях типа динамики межфазных границ, определяемого $f(t,\tau)$, по мере расширения пены. Эти особенности требуют разработки подхода к интерпретации данных о многократном динамическом рассеянии лазерного излучения существенно нестационарными средами, альтернативного по отношению к традиционным оценкам выборочных значений τ_c . В качестве подобного подхода предложено использовать выборочные оценки среднего времени жизни регистрируемых динамических спеклов $\langle \tau_{\mu} \rangle$ (рис. 3, 6).

Рис. 2. а – модель, используемая для определения $\rho(s)$ при лазерном зондировании эволюционирующей пены; О – объектив КМОП камеры; Д – сенсор камеры; с1,с2 – формируемые спеклы. б – модельная зависимость $\langle s \rangle$ от L/l^* ; зеленая линия отмечает близкую к линейному характер зависимости в режиме малократного рассеяния; синяя линия соответствует близкой к квадратичной зависимости $\langle s \rangle$ от L/l^* в диффузионном режиме.

В разделе 3.2 представлено обоснование инвариантности диагностического параметра $\langle \tau_{h} \rangle$ по отношению к типу микроскопической динамики рассеивающих центров в многократно рассеивающих случайно неоднородных средах на основе результатов Монте-Карло моделирования. В ходе моделирования рассеянное поле в произвольно выбранной точке наблюдения представлялось в виде суммы большого числа статистически независимых фазоров с единичными амплитудами и случайными значениями фазы:

Рис. 3. а – выборочные автокорреляционные функции флуктуаций интенсивности при «медленном» квази-изотермическом вспенивании (0.006 МПа/с) полилактида; время после начала сброса давления: 1 – 600 с; 2 – 1100 с. б – к оценке времени жизни произвольно выбранного динамического спекла; k - номер кадра; $\tau_{h,a} = (k_{da} - k_a)/\Phi$, где Φ - кадровая частота.

где *m* - номер фазора, M_{ph} - число фазоров, φ_m - случайное значение начальной фазы для *m*-го фазора, *k* определяет шаг моделирования по времени, а $\Delta \varphi_m(k)$ - приращение фазы на *k*-м шаге, определяемое задаваемым типом динамики рассеивающих центров. По вычисляемым на каждом шаге E_k вычислялись те-кущие значения интенсивности $I_k = |E_k|^2$ в точке наблюдения. Рассмотрены два предельных случая эволюции случайных значений $\Delta \varphi_m(k)$ с течением времени: (1) - $\Delta \varphi_m(k) = \Omega k \Delta \varphi_m(0)$, что имитирует регулярный характер движения рассеивателей, и (2) - $\Delta \varphi_m(k) = \Delta \varphi_m(k-1) + \Omega \tilde{\varphi}_m$ (случайные блуждания). При моделировании φ_m , $\Delta \varphi_m(0)$ и $\tilde{\varphi}_m$ генерировались как случайные величины, равномерно распределенные в интервале от $-\pi$ до π , а масштабный коэффициент Ω , определяющий динамику изменения случайных фазовых сдвигов интерферирующих волн, задавался в интервале от $1 \cdot 10^{-3}$ до 0.5. Число фазоров M_{ph} приято равным 100, а число шагов *k* по времени - $1 \cdot 10^7$. По полученным последовательностям значений I_k затем определялись $\langle \tau_h \rangle$ и τ_c для случаев (1) и (2) при различных значениях случаениях Ω .

В качестве примера рис. 4, а отображает фрагмент модельной последовательности I_k в случае (1) и иллюстрирует методику оценки выборочных значений времени жизни динамических спеклов при заданном пороге дискриминации ($0.1\langle I_k \rangle$). Значение $\langle \tau_h \rangle$ рассчитывается путем усреднения по выборке, а время корреляции τ_c определяется по спаду в *е* раз корреляционной функции $\tilde{g}_2(t,\tau)$ рассчитываемой по выражению (1) при $k \leftrightarrow t$. Ниже графика рис. 4, а приведена модельная развертка интенсивности в точке детектирования, иллюстрирующая ожидаемый эффект возникновения и исчезновения динамических спеклов. Рисунок 4, б иллюстрирует кардинальные различия в значениях τ_c , представленных в зависимости от параметра $\dot{\sigma}_{\Delta\varphi} = \pi \Omega/\sqrt{3}$ (среднеквадратичного сдвига фаз на один шаг по времени) для двух моделируемых типов динамики изменений фаз интерферирующих волн. На рис. 5, а приведены практически совпадающие зависимости среднего времени жизни динамических спеклов от $\dot{\sigma}_{\varphi}$. Для интерпретации полученного результата проведен частотный анализ выборочных значений $\tau_{u,i}$ для двух предельных случаев динамики изменения фазы, результаты которого представлены в виде гистограмм на рис. 5, б. Несмотря на существенные различия в форме выборочных функций плотности вероятности $\tau_{u,i}$, отмеченные вертикальными пунктирными линиями значения $\langle \tau_u \rangle$ совпадают.

В результате анализа полученных модельных данных установлено, что, вне зависимости от типа динамики изменения фазы интерферирующих волн (и, соответственно, микроскопической динамики рассеивающих центров, $\langle \tau_{ll} \rangle$ и $\dot{\sigma}_{\varphi}$ связаны между собой следующим фундаментальным соотношением:

$$\langle \tau_{lt} \rangle \dot{\sigma}_{\Delta \varphi} = \aleph (I_{th}) , \qquad (4)$$

где $\aleph(I_{th})$ - безразмерный параметр, зависящий только от порога дискриминации I_{th} (рис. 4, а). Учет влияния средней кратности рассеяния $\langle N_{sc} \rangle$ зондирующего излучения в объеме эволюционирующей пены приводит к следующему фундаментальному соотношению для среднего квадрата смещения рассеивающих центров за интервал времени, равный среднему времени жизни динамических спеклов на данной стадии расширения пены:

$$\left\langle \left(\Delta r \left(\left\langle \tau_{t_l} \right\rangle \right) \right)^2 \right\rangle \approx K_{th} \left\{ \lambda^2 / \left\langle N_{sc} \right\rangle \right\},$$
 (5)

где K_{th} - безразмерный коэффициент, определяемый порогом дискриминации флуктуаций интенсивности при оценке $\langle \tau_{tt} \rangle$.

Раздел 3.3 посвящен рассмотрению и экспериментальной верификации метода синтеза пространственно-временных спекл-текстур (ПВСТ), исходя из получаемых в экспериментах последовательностей изображений динамических спеклов. Рисунок 6, а иллюстрирует метод синтеза, заключающийся в выделении в каждом кадре последовательности столбца с заданным номером и формировании ПВСТ путем последовательной сборки столбцов в единый кадр. Соответственно, направление вдоль строк текстуры определяет эволюцию спеклов во времени, а вертикальное направление определяет пространственные распределения интенсивности спеклов в соответствующий момент времени. На рис. 6, 6 представлен типичный пример ПВСТ, синтезированной на основе видеоданных, полученных в эксперименте. Рисунок также иллюстрирует методику оценки выборочных значений τ_{h_i} .

Как установлено в предварительных экспериментах, на стадии интенсивного расширения СКФ-синтезируемых полилактидных пен, типичные значения $\langle \tau_{\mu} \rangle$

находятся в интервале от 100 мс до 4 с. При кадровой частоте КМОП камеры Optronis CamRecord CR3000, равной 60 Гц, число столбцов в создаваемых ПВСТ было выбрано равным 600. Соответственно, интервал выборки значений $\tau_{tr,i}$ для определения $\langle \tau_{tl} \rangle$ на анализируемой стадии вспенивания был равен 10 с. При количествах динамических спеклов в текстурах порядка 10 ÷ 15, подобные условия синтеза ПВСТ обеспечивали робастные оценки $\langle \tau_{tl} \rangle$ для всех применя-емых условий вспенивания.

Рис. 4. а – пример фрагмента реализации I_k в случае регулярной динамики изменения фаз интерферирующих волн. б – модельные зависимости времени корреляции τ_c от параметра $\dot{\sigma}_{\Delta\varphi}$ в случаях регулярной (1) и стохастической (2) динамики изменения фаз интерферирующих волн.

Рис. 5. а – модельные зависимости среднего времени жизни динамических спеклов от параметра $\dot{\sigma}_{\Delta\varphi}$ в случаях регулярной (1) и стохастической (2) динамики изменения фаз интерферирующих волн. б – модельные гистограммы выборочных значений $\tau_{tr,i}$ в случае регулярной и стохастической динамики изменения фаз при одинаковых значениях $\dot{\sigma}_{\Delta\varphi}$. Цветовая маркировка соответствует использованной на рис. 4,6 и 5,а. Пунктирные линии соответствуют средним значениям.

На рис. 7 представлены типичные ПВСТ на начальной и завершающей стадий формирования полилактидных пен для двух характерных режимов вспенивания: «квази-адиабатического» со скоростью сброса давления 0.03 МПа/с (а, б) и

«квази-изотермического» со скоростью сброса 0.006 МПа/с (в, г). Характерной особенностью в случае 2 является выраженная трансляционная составляющая в динамике спеклов (систематический наклон треков к временной оси). В то же время, в случае 1 в динамике спеклов доминирует «кипение» (boiling), свидетельствующее о высокой стохастичности микроскопической динамики межфазных границ в расширяющейся пене.

Рис. 6. а – процедура синтеза ПВСТ. б – пример синтезированной ПВСТ. В разделе 3.4 обсуждена феноменологическая модель, устанавливающая взаимосвязь между $\langle \tau_u \rangle$ и макроскопическими параметрами, характеризующими динамику расширения пены (текущим значением объема V_f и его первой производной V'_f), и представлены результаты ее экспериментальной верификации. В результате рассмотрения многократного динамического рассеяния зондирующего лазерного излучения в объеме расширяющейся пены с учетом взаимосвязи между ее оптическими транспортными характеристиками и структурой получено следующее выражение:

$$\left\langle \tau_{lt} \right\rangle \approx K N_c^{\frac{2-\beta}{6}} V_f^{\frac{2}{3}} / \left[V_f' - \left(V_f / N_c \right) N_c' \right], \tag{6}$$

где *К* - нормировочный коэффициент, N_c - число пор в расширяющемся объеме пены, β - показатель, определяемый режимом переноса излучения в пене и близкий к 1 в случае малократного рассеяния и стремящийся к 2 в диффузионном режиме переноса (рис. 2, б). При незначительных изменениях N_c в процессе расширения («квази-изотермический» режим), имеет место следующее соотношение $\langle \tau_h \rangle \propto V_f^{\frac{2}{3}} (V_f')^{-1}$. В ходе экспериментов по верификации модели (5) анализировалось поведение синтезируемых полилактидных пен в системе координат $\left(V_f^{\frac{2}{3}} (V_f')^{-1}, \langle \tau_h \rangle\right)$ с использованием эмпирических данных о динамике спеклов (синтезированные ПВСТ) и динамике расширения синтезируемых образцов пен (V_f, V_f') . Параметры V_f, V_f' определялись путем обработки и анализа видеопотоков видеоданных о динамике расширения образцов пены, регистрируемых с использованием второго канала регистрации видеоданных лабораторной системы (рис. 1).

На рис. 8 в логарифмических координатах представлены значения $\langle \tau_{lt} \rangle$ в зависимости от параметра $V_f^{\frac{2}{3}} (V'_f)^{-1}$ для квазиизотермического (скорость сброса давления 0.006 МПа/с) и квазиадиабатического (0.03 МПа/с) режимов сброса давления. Приведенные уровни значимости соответствуют уровню значимости 0.9.

Рис. 7. ПВСТ, полученные на различных стадиях вспенивания в квазиадиабатическом (а, б; 0.03 МПа/с) и квази-изотермическом (в, г; 0.006 МПа/с). Изображения (а, в) соответствуют стадии интенсивного расширения пены, когда V_f составляет приблизительно 0.5 от максимального значения; (б, г) соответствуют переходу от интенсивного расширения к стадии стабилизации. Вертикальные оси оцифрованы в пикселях, горизонтальные – в секундах.

Наклоны аппроксимирующих степенных зависимостей $\langle \tau_{lt} \rangle = f \left\{ V_f^{\frac{2}{3}} (V_f')^{-1} \right\} \propto K \left\{ V_f^{\frac{2}{3}} (V_f')^{-1} \right\}^{\gamma}$ в логарифмических координатах соответствуют показателям степени $\gamma \approx (0.989 \pm 0.059)$ в случае квазиизотермического режима

и $\approx (0.571 \pm 0.039)$ для квазиадиабатического режима. Таким образом, в первом случае реализуется условие $N'_c \approx 0$, в то время как при квазиадиабатическом

расширении в полимерной матрице формируемой пены в процессе ее интенсивного расширения происходит зарождение новых пор.

Рис. 8. Взаимосвязь между средним жизни динамических спеклов и параметром $V_f^{\frac{2}{3}}(V_f')^{-1}$. 1, 3 – режим квазиадиабатического расширения (0.03 МПа/с); 2, 4 – режим квази-изотермического расширения (0.006 МПа/с). 1, 2 – эмпирические данные (анализ ПВСТ); 3, 4 – аппроксимирующие степенные зависимости.

В разделе 3.5 сформулированы основные выводы по главе.

Глава 4 посвящена анализу и интерпретации эмпирических данных о транспорте зондирующего лазерного излучения в синтезированных полимерных пенах. Исследовались спектральные характеристики (полуширина спектра флуоресцентного отклика $\Delta \lambda_f$) образцов синтезированной пены с добавками флуорофора (родамина 6ж) в зависимости от интенсивности накачки импульсно-периодическим лазерным излучением с длиной волны 532 нм.

В разделе 4.1 приведено описание методики приготовления образцов и проведения экспериментов по исследованию их флуоресцентного отклика в зависимости от интенсивности лазерной накачки. При синтезе образцов пены, помимо флуорофора (родамина 6Ж), в образцы полилактида также добавлялись наночастицы диоксида титана (анатаза) для увеличения эффективности взаимодействия излучения накачки со средой.

В разделе 4.2 представлены результаты качественной интерпретации полученных экспериментальных данных на основе представлений о возбуждении стохастической лазерной генерации во флуоресцирующих случайно-неоднородных средах. Проведено сопоставление эффекта сужения спектрального отклика $\Delta \lambda_f$ для трех различных систем «полилактид/родамин 6ж/наночастицы анатаза»), сопоставимых по концентрации молекул флуорофора (рис. 9). Проведен качественный анализ полученных данных в рамках представлений о влиянии времени жизни квантов флуоресценции на эффективность возбуждения индуцированной составляющей, спонтанное усиление которой приводит к сужению спектра флуоресцентного отклика и может быть интерпретировано как переход от спонтанной флуоресценции в среде к стохастической лазерной генерации. Увеличение времени жизни флуоресцентных квантов во вспененных средах обусловлено квазиволноводным эффектом распространения излучения накачки и флуоресценции в стенках пор. Данный вывод согласуется с экспериментальными данными о роли волноводного эффекта в процессе переноса излучения в пенах, ранее представленными Э. Гиттингсом и др. [13].

Рис. 9. Зависимости полуширины спектра флуоресценции от интенсивности лазерной накачки на длине волны 532 нм для образцов полилактида, допированных родамином 6 ж и наночастицами анатаза (для повышения эффективности взаимодействия). 1 – пластифицированный полилактид; 2 – полилактидная пена, полученная из образца 1; 3 – пластифицированный полилактид с концентрацией флуорофосоответствующей pa. средней концентрации в образце 2.

В разделе 4.3 сформулированы основные выводы по главе.

В Заключении сформулированы основные результаты и выводы диссертационной работы и представлены перспективные направления дальнейших исследований по тематике работы.

Список цитируемых источников

1. Stetefeld J., McKenna S.A, Patel T.R., Trushar R. Dynamic light scattering: a practical guide and applications in biomedical sciences// Biophysical Reviews. – 2016. – V. 8. – pp. 409–427.

2. Maret G., Wolf P.-E. Multiple light scattering from disordered media. The effect of Brownian motion of scatterers //Zeitschrift für Physik B. – 1987. – V. 65. – pp. 409-413.

3. Pine D.J., Weitz D.A., Chaikin P.M., Herbolzheimer E. Diffusing wave spectroscopy // Physical Review Letters. – 1988. V.65. – pp. 1134–1137.

4. Scheffold F., Skipetrov S.E., Romer S., Schurtenberger P. Diffusing-wave spectroscopy of nonergodic media// Physical Review E. – 2001. – V. 63. – Ar. 061404.

5. Zakharov P., Cardinaux F., Scheffold F. Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme// Physical Review E. -2006. - V. 73. - Ar. 011413.

6. Boas D.A., Campbell L.E., Yodh A.G. Scattering and imaging with diffusing temporal field correlations// Physical Review Letters. – 1995. – V. 75. – pp. 1855 - 1858.
7. Snabre P., Crassous J. Multispeckle diffusing wave spectroscopy of colloidal particles suspended in a random packing of glass spheres//European Physical Journal E. – 2009. – V. 29. – pp. 149-155.

8. Scheffold F., Romer S., Cardinaux F. et al. New trends in optical microrheology of complex fluids and gels// Progress in Colloid and Polymer Science. – 2004. – V. 123. – pp. 141-146.

9. Brunel L., Brun A., Snabre P., Cipelletti L. Adaptive Speckle Imaging Interferometry: a new technique for the analysis of microstructure dynamics, drying processes and coating formation// Optics Express. – 2007. – V. 15. – pp. 15250–15259.

10. Sie E. J., Chen H., Saung E.-F. et al. High-sensitivity multi-speckle diffuse correlation spectroscopy// Neurophotonics. – 2020. – V. 7. - Ar. 035010.

11. Wang D., Parthasarathy A.B., Baker W.B. et al. Fast blood flow monitoring in deep tissues with real-time software correlators// Biomedical Optics Express. -2016. -V.7. -p. 776.

12. Xu J., Jahromi A.K., Yang C. Diffusing wave spectroscopy: A unified treatment on temporal sampling and speckle ensemble methods // APL Photonics. – 2021. – V. 6. – Ar. 016105.

13. Gittings A.S., Bandyopadhyay R., Durian D.J. Photon channeling in foams// Europhysics Letters. – 2004. – V. 65. – pp. 414-419.

Список публикаций по теме диссертации

I. Издания, входящие в перечень ВАК и базы данных WoS, Scopus

1. Зимняков Д. А., Алонова М. В., Ювченко С. А., Ушакова Е. В. Математическое моделирование переноса зондирующего излучения в низкокогерентной рефлектометрии случайно-неоднородных сред //Известия Саратовского университета. Новая серия. Серия: Физика. – 2018. – Т. 18. – № 1. – С. 4-15.

2. Зимняков Д. А., Епифанов Е. О., Калачева А. В., Ушакова Е.В. [и др.] Особенности квази-изотермического вспенивания СКФ-пластифицированного полилактида: эффект перехода от расширения к коллапсу пены // Сверхкритические флюиды: теория и практика. – 2020. – Т. 15. – № 1. – С. 112-123.

3. Zimnyakov D., Alonova M., Ushakova E., Ushakova O., Isaeva A., Isaeva, E. Dynamic light scattering by foamed polymers during preparation of scaffold prototypes: events statistics analysis versus evaluation of correlation time in data interpretation //Photonics. -2021. -V. 8. -Ar. 549.

4. Zimnyakov D., Alonova M., Ushakova E., Volchkov S. Speckle-based sensing of microscopic dynamics in expanding polymer foams: Application of the stacked speckle history technique //Sensors. -2021. -V. 21. -Ar. 6701.

5. Zimnyakov D., Alonova M., Ushakova E. Depressurization-induced nucleation in the "polylactide-carbon dioxide" system: self-similarity of the bubble embryos expansion //Polymers. -2021. -V. 13. -Ar. 1115.

6. Зимняков Д. А., Алонова М. В., Ушакова Е. В. [и др.] Сверхкритический флюидный синтез высокопористых полилактидных матриц: фундаментальные особенности и технологические аспекты формирования, развития и стабилизации полимерные пен //Сверхкритические флюиды: теория и практика. – 2021. – Т. 16. – № 2. – С. 99-109.

7. Алонова М. В., Волчков С. С., Зимняков Д. А., Исаева А. А., Исаева Е.А., Ушакова Е. В., Ушакова О.В. Оптическая диффузионная диагностика эволюционирующих полимерных пен// Журнал технической физики. – 2023. – Т. 93, №4. – с. 463-472.

II. Прочие научные издания

8. Зимняков Д. А., Здражевский Р. А., Ушакова Е. В. и др. Фундаментальные аспекты сверхкритических флюидных технологий синтеза высокопористых полимерных матриц для регенеративной медицины //Медицинская физика (ТКМФ-7). – 2020. – С. 131-132.

9. Alonova M. V., **Ushakova E. V.**, Zimnyakov D. A. Image processing procedures for quantification of bubble germ growth/collapse in synthesized highly-porous polymer matrices //SPIE Proceedings. – 2021. – V. 11845. – Ar. 118451B.

10. Ushakova E. V., Alonova M. V., Zimnyakov D. A. Non-coherent videoreflectometry of growing pores in plasticized polymers during supercritical fluidic foaming // SPIE Proceedings. – 2021. – V. 11845. – Ar. 118451A.

11. Ушакова Е. В., Алонова М. В., Зимняков Д. А. Фурье-анализ динамических спекл-картин применительно к мониторингу СКФ-синтеза высокопористых полимерных матриц // Сверхкритические флюидные технологии в решении экологических проблем – Архангельск: Издательский центр САФУ, 2022. – С. 152-155.12.

12. Ушакова Е. В., Алонова М. В., Зимняков Д. А. Пространственно-временной анализ спекл-структур для диагностики морфологических особенностей вспененных полимеров // Арктические исследования: от экстенсивного освоения к комплексному развитию – Архангельск: Издательский центр САФУ, 2022. – С. 524-527.

III. Свидетельства о регистрации программ для ЭВМ

13. № 2021661976. Программа моделирования роста зародышей пор на ранней стадии вспенивания пластифицированных полимеров. 20.07.2021 / Ушакова Е. В., Алонова М. В., Зимняков Д. А.

14. № 2022616120. Программа для пространственно-временного анализа динамических спекл-полей. 05.04.2022 / Е. В. Ушакова, М. В. Алонова, Д. А. Зимняков.