ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

Бобенко Надежды Георгиевны

на диссертационную работу Колосова Дмитрия Андреевича

«Закономерности электронного транспорта и перетекания заряда в тонких плёнках на основе графена с вертикально ориентированными углеродными нанотрубками при модификации нанополостей плёнок молекулярными кластерами бора и кремния», представленную на соискание ученой степени кандидата физико-математических наук по специальности 1.3.5. – Физическая электроника.

Актуальность темы диссертационной работы. Диссертационная работа Колосова Д.А. посвящена актуальной тематике физической электроники- исследованию электронного транспорта в тонких плёнках на основе графена с вертикально ориентированными одностенными углеродными нанотрубками (ОУНТ), модифицированными кластерами бора и кремния. Композит графен/ОУНТ, обладающий улучшенными электропроводящими и электрофизическими свойствами, в перспективе может быть успешно использован при создании различных компонентов устройств наноэлектроники, суперконденсаторов, сенсоров и др. Исследуемые композиты графен/ОУНТ имеют многообразную пористую структуру, характеризующуюся различным диаметром и хиральностью УНТ, числом графеновых слоев и тд. Определение энергетически стабильных супер-ячеек графен/ОУНТ с последующим установлением способов эффективного заполнения полостей композита графен/ОУНТ, необходимо для последующего применения материала в реальных приложениях. Изучение влияния модификации композита графен/ОУНТ на изменение емкости, электросопротивления, плотности электронных состояний важно для разработки источников питания.

Изготовление и последующая модификация исследуемых материалов сопряжены с рядом технологических трудностей, поэтому предварительные теоретические исследования взаимосвязи структура-свойства композита графен/ОУНТ, позволяющие определить наиболее предпочтительные структуры и способы их модификации, важны для ускорения внедрения композита в практические приложения.

В связи с этим диссертационное исследование Колосова Д.А. является актуальным для современного этапа развития методов математического моделирования новых материалов и их физико-химических свойств и характеристик.

Цель диссертационного исследования заключается в выявление физических закономерностей электронных и электрофизических свойств графен/ОУНТ композитных тонких плёнок, чистых и модифицированных кремнием и бором, для повышения эффективности их применения в качестве наноматериала для электродов портативных устройств. Цель сформулирована четко и полностью отражает проведенные в диссертационной работе исследования. Для достижения цели решены **три задачи**. Задачи

сформулированы четко, последовательно, в соответствии с единой логикой и соответствуют общей цели работы.

Анализ содержания диссертации. Диссертационная работа состоит из введения, трёх глав, заключения и списка литературы (146 наименований). Диссертация изложена на 128 страницах, содержит 11 таблиц и 31 рисунок.

Во введении обоснована актуальность выбранной темы и степень ее разработанности, а также определены цель и задачи диссертационной работы, аргументирована научная новизна и практическая значимость работы, кратко описаны методология и методы исследования, представлены основные результаты и положения, выносимые на защиту, сформулированные в ходе работы, а также приведены сведения об апробации результатов работы.

Первая глава посвящена методологической части диссертационной работы. Подробно обосновано использование того или иного метода для проведения вычислительных экспериментов по моделированию атомного и электронного строения наноструктур и расчета их электрофизических характеристик. По мимо общеизвестных методов, которые применяются для решения подобных задач, описана разработанная диссертантом новая методика для исследования заполнения нанополостей графен/ОУНТ плёнок атомами лития/натрия и вычисления количества связанных чужеродных атомов с атомами углеродного каркаса и кластеров.

Вторая глава состоит из нескольких разделов, посвященных исследованию процесса заполнения нанополостей графен-нанотрубного композита атомами лития и натрия с позиции поиска наиболее оптимальной модификации графен/ОУНТ композитных тонких плёнок, обеспечивающей наибольшую удельную ёмкость при отрицательной энергии связи лития/натрия с атомным каркасом композита. Первый раздел посвящен определению равновесной структуры супер-ячеек композита, состоящего из одной или двух ОУНТ разной хиральности с закрытыми и открытыми концами и одного или трех слоев графена. В следующем разделе для выбранных равновесных структур композитов графен/ОУНТ исследуется возможность заполнения их литием, натрием и кластерами кремния. Получены данные об изменениях удельной емкости, ширины запрещенной зоны, энергии Ферми, заряде и других характеристик материала. Установлена взаимосвязь структура-свойства материала и определены оптимальные структуры композита графен/ОУНТ и соотношения лития, натрия, кремния получения материала с необходимыми для практического применения электрофизическими характеристиками и свойствами.

В третьей главе проведено исследование физического процесса — перетекание заряда между кластерами бора В12 и углеродным каркасом, а также влияние этого процесса на квантовую ёмкость композита, с позиции поиска наиболее оптимальной модификации графен/ОУНТ композитных тонких плёнок, обеспечивающей наибольшую квантовую ёмкость и электропроводность. Распределение заряда в супер-ячейках

композита графен/ОУНТ исследовано для УНТ с несколькими хиральностями с открытыми и закрытыми концами. Установлены факторы, ответственные за тип проводимости композитов. Также в данной главе определена концентрационная зависимость квантовой емкости, переданного углеродной структуре заряда и электросопротивления при модификации композита графен/ОУНТ кластерами бора. Определены механизмы, описывающие обнаруженные зависимости.

Основные результаты работы и выводы подробно сформулированы в заключении.

Научная новизна и практическая значимость. В результате проведенной работы получен ряд **новых научных результатов** по исследованию структуры и модификации композита графен/ОУНТ, дополняющие опубликованные ранее исследования других авторов, из которых можно выделить следующие, имеющие приоритетный характер, как в области физической электроники, так и модификации существующих методов и реализации их в программные приложения для моделирования физических экспериментов:

- 1. Выявлен физический эффект снижения электрического сопротивления композита графен/ОУНТ в сотни раз при добавлении кластеров кремния Si16 за счет сдвига энергии Ферми в область разрешенных электронных состояний и перетекания заряда от кластеров кремния к углеродному каркасу. Показано, что добавление атомов лития и натрия в структуру графен/ОУНТ с кластерами кремния приводит к еще большему снижению сопротивления за счет появления дополнительных каналов проводимости вблизи энергии Ферми.
- 2. Установлено, что для достижения максимальной удельной ёмкости композитных плёнок графен/ОУНТ с открытыми нанотрубками необходима массовая доля кремния 13~18%. Выявлено, что при избыточном заполнении кремнием нанополостей композитных плёнок графен/ОУНТ удельная ёмкость снижается, так как не остается места для посадки лития в нанополостях композита
- 3. Показано, что кластеры бора B12 в значительной степени увеличивают квантовую ёмкость (до \sim 2 к Φ /г) композитных плёнок графен/ОУНТ с нанотрубкой (6,6) типа «кресло» путем внесения дополнительных электронных состояний.
- 4. Разработана и программно реализована оригинальная методика заполнения нанополостей графен/ОУНТ плёнок и вычисления количества связанных атомов, обеспечивающая энергетически выгодное распределение наполнителей по углеродному каркасу и позволяющая достаточно быстро реализовывать серию численных экспериментов с многоатомными суперячейками.

Новизна результатов проведённых в рамках диссертационной работы исследований подтверждается научными публикациями, что соответствует рекомендациям «Положения о присуждении ученых степеней», утвержденного постановлением Правительства РФ от 24.09.2013 г. № 842.

Обоснованность и достоверность защищаемых научных положений и выводов обеспечивается адекватностью примененных квантово-механических и молекулярнодинамических математических моделей, содержащих набор числовых параметров, значения которых выбирались исходя из известных экспериментальных данных, полученных для графена и углеродных нанотрубок. Результаты, представленные в диссертационной работе, также прошли апробацию на российских и международных конференция. Ряд полученных научных результатов опубликован в авторитетных отечественных и зарубежных высокорейтинговых научных изданиях, в том числе уровня Q1-Q2.

Замечания по диссертационной работе. По содержанию работы могут быть сделаны следующие замечания:

- 1. Во второй и третьей главах показано, что в местах соединения полуфуллерена и основной части ОУНТ возникают топологические дефекты, которые приводят к перераспределению заряда. Однако, влияние на электрофизические свойства и характеристики модификации композита графен/ОУНТ кремнием и бором исследуется только при расположении кластеров вблизи соединение трубки и графеновой поверхности. Думаю, что дополнительное исследование модификации кластерами кремния всей поверхности композита улучшило бы работу.
- 2. В диссертационной работе при обосновании актуальности тематики и выбора материалов пишется о предполагаемом использовании исследуемого композита в ионисторах и в качестве электродов ионно-литиевых батарей. Для данных практических применений исследуемого материала важно понимать влияние ионов Li+ и Na+ на изменение его физико-химических свойств, однако, все исследования по выявлению закономерностей изменения свойств при модификации композита графен/ОУНТ проводятся для атомов Li и Na, а не их ионов.
- 3. В работе не исследована температурная зависимость свойств и характеристик модифицированного композита графен/ОУНТ. Реальные портативные устройства, в которых планируется применять исследуемые материалы в широком температурном диапазоне, поэтому важно знать, насколько сильно изменение температуры может повлиять на электрофизические характеристики.

Указанные **замечания** носят уточняющий характер и не ставят под сомнение общий высокий уровень диссертационной работы.

Общая оценка диссертационной работы.

Диссертационная работа Колосова Д. А. содержит решение актуальной задачи физической электроники по выявлению оптимальной структуры тонких пленок композита графен/ОУНТ, модифицированных молекулярными кластерами бора и кремния, необходимой для дальнейшего применения композита для создания принципиально новых источников питания.

Диссертационная работа написана ясным языком, имеет логически выстроенную структуру, содержит достаточное для понимания количество иллюстраций и таблиц. Автореферат диссертации в полной мере отражает ее содержание.

Результаты диссертационной работы опубликованы в 9 печатных работах, из них 5 работ в изданиях, индексируемых международными информационно-аналитическими базами данных и системами научного цитирования Web of Science и/или Scopus, 1 работа —в издании из перечня ВАК при Минобрнауки России, 3 — в трудах и сборниках всероссийских и международных конференций.

С учетом вышесказанного считаю, что диссертационная работа «Закономерности электронного транспорта и перетекания заряда в тонких плёнках на основе графена с вертикально ориентированными углеродными нанотрубками при модификации нанополостей плёнок молекулярными кластерами бора и кремния» соответствует всем требованиям пп. 9-11,13,14 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства Российской Федерации от 24.09.2013 г. № 842, предъявляемым к диссертациям на соискание ученой степени кандидата физикоматематических наук, а её автор, Колосов Дмитрий Андреевич, заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 1.3.5. — Физическая электроника.

Научный сотрудник лаборатории физики нелинейных сред Федерального государственного бюджетного учреждения науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук, кандидат физикоматематических наук (01.04.07. — Физика конденсированного состояния).

Адрес: 634055, г. Томск, пр. Академический, 2/4, Телефон: +7(923)408-71-86,

E-mail: nbobenko@ispms.ru

Бобенко Надежда Георгиевна

11.11.2021

11.11.

Подпись к.ф.-м.н. Бобенко Надежды Георгиевны удостоверяю:

115 Series

Ученый секретарь ИФГМСОРАН, к.ф.-м.н.

Матолыгина Наталья Юрьевна

Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН).

Адрес: 634055, г. Томск, пр. Академический, 2/4

Телефон: +7 (3822) 49-18-81 E-mail: root@ispms.tomsk.ru