ФИЗИЧЕСКИЙ ПРАКТИКУМ ОПТИКА

Поляризация света

ЛИНЕЙНЫЕ ПОЛЯРИЗАТОРЫ. ЛИНЕЙНАЯ ПОЛЯРИЗАЦИЯ СВЕТА. ЗАКОН МАЛЮСА

САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО

Институт физики

В.П. Рябухо, Г.В. Симоненко

ЛИНЕЙНЫЕ ПОЛЯРИЗАТОРЫ. ЛИНЕЙНАЯ ПОЛЯРИЗАЦИЯ СВЕТА. ЗАКОН МАЛЮСА

Руководство к лабораторной работе по курсу общей физики ОПТИКА

ПОЛЯРИЗАЦИЯ СВЕТА

Саратов 2023 г.

Лабораторная работа

ЛИНЕЙНЫЕ ПОЛЯРИЗАТОРЫ. ЛИНЕЙНАЯ ПОЛЯРИЗАЦИЯ СВЕТА. ЗАКОН МАЛЮСА

Цель работы: Изучение закономерности прохождения света через последовательно установленные линейные поляризаторы в зависимости от взаимной ориентации осей пропускания поляризаторов.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Поляризация света

Свет — это совокупность коротких электромагнитных волн определенного диапазона частот (оптического), простирающегося в шкале длин волн λ от 0.001 до 100 мкм. Элементарными источниками столь высокочастотных волн служат атомы и молекулы вещества.

Природные – естественные, и технические источники света состоят из множества первичных элементарных источников – атомов и молекул, излучающих элементарные электромагнитные квазисферические волны в виде волновых цугов конечной длительности. Излучение всего источника складывается из множества таких элементарных волн, которые имеют разные ориентации векторов возмущений электрического \vec{E} и магнитного \vec{H} полей, разные частоты, начальные фазы и амплитуды. В результате сложения возмущений этих волн образуется световое излучение от всего источника, возмущения которого не имеют устойчивых во времени закономерностей в ориентации суммарного электрического поля в силу малой длительности складываемых волновых цугов элементарных волн.

Электромагнитные волны - и волны света в том числе, являются поперечными. В этих волнах электрические \vec{E} и магнитные \vec{H} возмущения направлены перпендикулярно направлению их распространения: вектора возмущений \vec{E} и \vec{H} перпендикулярны вектору скорости \vec{v} распространения волны: $\vec{E} \perp \vec{v}$, $\vec{H} \perp \vec{v}$. Вектора \vec{E} , \vec{H} и \vec{v} (или \vec{k}) в электромагнитной волне составляют правую тройку векторов (рис.1).

Рис.1. Вектора возмущений в поперечной электромагнитной волне:

 \vec{E} - вектор электрического поля световой волны,

 \vec{H} - вектор магнитного поля световой волны, \vec{v} - вектор скорости световой волны,

 $ec{k}$ - волновой вектор световой волны

Со свойством поперечности электромагнитных волн связано явление их поляризации, которое заключается в определенной закономерности изменения во времени направлений векторов возмущений волны $\vec{E}(t)$ и $\vec{H}(t)$ в плоскости x, y, перпендикулярной направлению распространения волны. В поляризованной волне направления и величины возмущений в плоскости x, y, перпендикулярной направлению распространения – оси z, изменяются по определенному закону. Та или иная закономерность изменения во времени направлений возмущений в электромагнитной волне определяет соответственно то или иное состояние поляризации возмущений в озмущений в волновом поле.

Для определенности за вектор поляризации выбран вектор напряженности электрического поля $\vec{E}(t, \vec{r})$, поскольку взаимодействие света с веществом в большинстве случаев определяется именно электрическими возмущениями.

Состояние поляризация света полностью определено характером изменения во времени *t* вектора напряженности электрического поля $\vec{E}(t, \vec{r})$ в отдельных точках $\vec{r}(x, y, z)$ пространства.

В волновом поле света от природных и технических (не лазерных) источников возмущения не имеют устойчивых во времени ориентаций электрического поля из-за случайного характера процесса излучения элементарных волн источниками света. В силу этого поляризация возмущений суммарной волны от всего источника хаотически изменяется во времени, принимая различные состояния поляризации - эллиптической, круговой и линейной, в течение очень малого интервала времени - времени когерентности τ_c волны, которое зависит от ширины $\Delta \omega$ частотного спектра суммарной волны: $\tau_c \approx 2\pi/\Delta \omega = 1/\Delta v$, где $\Delta \omega = 2\pi \Delta v$.

Такой хаотически (случайно) поляризованный свет также называют естественным или неполяризованным светом, поскольку в нём отсутствует какая-либо детерминированная (определенная) закономерность в изменении направления и величины возмущений $\vec{E}(t,\vec{r})$ в течение времени, необходимого для наблюдения, или отсутствует какое-либо преимущественное по амплитуде колебаний направление возмущений.

Поляризованная электромагнитная волна, в том числе и свет, может иметь следующие состояния поляризации возмущений: линейную, круговую (циркулярную) и эллиптическую поляризации. Эллиптическая поляризация является наиболее общим состоянием поляризации, а линейная и круговая – частными, вырожденными случаями.

На практике линейно поляризованный свет получают с помощью линейных поляризаторов - кристаллических призм, дихроичных пластин и поляроидных пленок (рис.2). Принцип работы призм основан на явлении двойного лучепреломления света в прозрачных анизотропных средах – в кристаллах. В дихроичных пластинах и поляроидных пленках линейная поляризация света возникает в результате избирательного поглощения и пропускания световых волн в зависимости от направления возмущений электрического поля в них.

Рис. 2. Получение линейно поляризованного света из пучка естественного света при его прохождении через поляризационную призму (а) и поляроид (б): PR – поляризационная призма Сенармона, P – поляроид, \vec{E}_x и \vec{E}_y - векторы возмущений ортогонально поляризованных волн в естественном свете, \vec{E}_o и \vec{E}_e - векторы возмущений обыкновенной и необыкновенной волн в кристалле

Свет круговой и эллиптической поляризации получают путем сложения двух линейно поляризованных волн с ортогональными направлениями возмущений $\vec{E}_x(t,z)$ и $\vec{E}_y(t,z)$, распространяющихся в одном и том же направлении z. Эти волны должны быть взаимно когерентными – с неизменной во времени разностью фаз колебаний, иметь одинаковые частоты ω_0 и определенные фазовые соотношения – разность фаз колебаний $\Delta \phi_{xy}$.

Часто для получения таким способом эллиптически или циркулярно поляризованных пучков света используют фазовые анизотропные пластины строго определенной толщины. Эти пластины вносят разные по величине фазовые задержки φ_x и φ_y волн с ортогональными линейными поляризациями при их распространении через анизотропную пластину. На выходе из пластины эти волны приобретают дополнительную разность фаз $\Delta \varphi_{xy}$, зависящую от

оптических свойств пластины и длины волны света, $\Delta \phi_{xy} = \frac{2\pi}{\lambda} (n_o - n_e) d$, где n_o и n_e - показатели преломления пластины, d - геометрическая толщина пластины.

Для получения света с круговой (циркулярной) поляризацией разность фаз $\Delta \phi_{xy}$, складываемых ортогонально поляризованных волн, должна быть равной $\pm \pi/2$ (в общем случае $\pm (2m+1)\pi/2$, где m = 0, 1, 2,...), а амплитуды этих волн должны быть равными ($E_{x0} = E_{y0}$). В этом случае вектор напряженности электрического поля суммарной волны $\vec{E}(t)$ будет совершать круговые движения, а конец этого вектора, соответственно, описывать окружность в плоскости *x*, *y*, перпендикулярной направлению распространения волны оси *z* (см. рис.3). Полный оборот вектора \vec{E} на 360° будет совершаться за один период *T* колебаний волны, $T = 2\pi/\omega_0$, где ω_0 - круговая частота колебаний.

Кристаллические пластины, с помощью которых преобразуется линейная поляризация в круговую, называют «фазовыми пластинами в $\lambda/4$ » или «четверть волновыми пластинами», поскольку вносимая такой пластиной разность фаз $\Delta \varphi_{xy} = \pi/2$, что соответствует оптической разности хода волн в пластине $\Delta_{xy} = \lambda/4$, поскольку $\Delta \varphi_{xy} = 2\pi \Delta_{xy}/\lambda$.

Рис. 3. Круговая (циркулярная) поляризация колебаний электрического поля волны света: а – правая, б – левая

Если разность фаз $\Delta \phi_{xy}$ складываемых волн не равна 0, $\pm \pi$ или $\pm \pi/2$, или при $\Delta \phi_{xy} = \pm \pi/2$ амплитуды колебаний волн не равны, $E_{x0} \neq E_{y0}$, или имеет место и то и другое: $\Delta \phi_{xy} \neq \pm \pi/2$ и $E_{x0} \neq E_{y0}$, то тогда суммарная волна имеет эллиптическую поляризацию, при которой конец вектора поляризации $\vec{E}(t)$ описывает в плоскости x, y эллипс.

Эллипс поляризации оказывается приведенным к осям координат x, y, когда $\Delta \phi_{xy} = \pm \pi/2$, а $E_{x0} \neq E_{y0}$ (рис.4а). При $\Delta \phi_{xy} \neq \pm \pi/2$ и произвольном соотношении амплитуд E_{x0} и E_{y0} оси эллипса поляризации не совпадают с осями координат (рис.4б).

Рис. 4. Эллиптическая поляризация колебаний электрического поля света

Сложение ортогонально линейно поляризованных волн может приводить к образованию также и линейно поляризованной суммарной волны. При разности фаз колебаний $\Delta \phi_{xy} = 0$ или $\pm \pi$ (в общем случае при $\Delta \phi_{xy} = m\pi$) и произвольных амплитудах E_{x0} и E_{y0} складываемых волн суммарная волна оказывается линейно поляризованной в том или ином направлении, что зависит от разности фаз – 0 или $\pm \pi$ и соотношения амплитуд волн (рис. 5)

Рис. 5. Линейная поляризация колебаний электрического поля света:

Естественный (неполяризованный, хаотически поляризованный) свет можно представить в виде суммы двух ортогонально линейно поляризованный волн $\vec{E}_x(t,z)$ и $\vec{E}_y(t,z)$ с равными интенсивностями $I_x = I_y$, разность фаз которых $\Delta \varphi_{xy}$ не постоянна во времени наблюдения, а хаотически и равновероятно изменяется во всем основном интервале значений $[-\pi,+\pi]$. Такие волны света взаимно некогерентные.

Соответственно естественный свет можно получить путем сложения двух взаимно не-когерентных ортогонально линейно поляризованных волн света с равными интенсивностями.

Линейно поляризованные волны простой формы, например, плоские, сферические, цилиндрические, ещё называют плоско поляризованными волнами, в которых выделяют плоскость поляризации. Плоскость, в которой находится вектор напряженности электрического поля \vec{E} и волновой вектор \vec{k} (или вектор скорости \vec{v}), называется плоскостью поляризации волны. У плоской волны – параллельного пучка света, множество параллельных друг другу плоскостей поляризации. У сферической волны плоскости поляризации для разных лучей света совпадают только в определенных сечениях волнового поля волны, а остальные плоскости поляризации не параллельны. Но сферическую волну света, как расходящуюся, так и сходящуюся, с линейной поляризацией возмущений также можно называть плоско поляризованной, поскольку в ней можно выделить плоскости поляризации возмущений.

Прохождение света через линейные поляризаторы

Линейные поляризаторы – в частности, поляроиды, используют как поляризаторы, так и в качестве анализаторов состояния поляризации света. Через поляризатор может проходить как естественный свет для его поляризации, так и свет с той или иной поляризацией – линейной, круговой, эллиптической, для анализа состояния поляризации этого света. Поляризатор также используется для анализа частичной линейной поляризации пучка света.

Во всех случаях из поляризатора выходит свет с линейной поляризацией вдоль оси пропускания поляризатора и интенсивностью, зависящей как от состояния и параметров поляризации падающего света, так и от ориентации оси пропускания поляризатора.

При прохождении естественного света через линейный поляризатор получается свет с линейной поляризацией с колебаниями вдоль оси пропускания поляризатора и интенсивностью I_1 , равной половине интенсивности I_N естественного света, $I_1 = 0.5I_N$ без учета потерь при отражении света от граней поляризатора. Это подтверждается экспериментально и теоретически, исходя из следующих двух связанных представлений о естественном свете.

Естественный (неполяризованный, хаотически поляризованный) свет можно представить в виде суммы двух взаимно некогерентных ортогонально линейно поляризованных волн с равными интенсивностями ($I_x = I_y$). При этом направления поляризаций этих двух волн света можно определять произвольно, в том числе и по отношению к оси пропускания поляризатора: например, для одной волны - вдоль оси пропускания поляризатора, а для другой волны - перпендикулярно этой оси (рис.6). Волна с направлениями возмущений, перпендикулярными оси пропускания поляризатора-поляроида, полностью поглощаются в нем, а волна с колебаниями вдоль оси пропускания (\vec{E}_x на рис.6) проходят через поляроид практически без поглощения.

Рис.6. Прохождение естественного света через линейный поляризатор – поляроид: S - источник света, Р – поляроид, O – O' – ось пропускания поляроида, \vec{E}_x и \vec{E}_y - векторы возмущений ортогонально линейно поляризованных взаимно некогерентных волн в естественном свете, \vec{E}_1 - вектор возмущений в прошедшей линейно поляризованной волне

Таким образом, из поляроида выходит одна линейно поляризованная волна света. Поскольку интенсивность I_N падающего на поляроид естественного света $I_N = I_x + I_y$, а $I_x = I_y$, то интенсивность I_1 поляризованной волны, выходящей из поляроида, определяется следующим простым соотношением:

$$I_1 = \frac{1}{2} I_N \,. \tag{1}$$

Для получения такого соотношения для интенсивностей падающей естественной и прошедшей поляроид волн можно использовать и другое представление о естественном свете – о закономерностях изменения направления возмущений в нем в течение времени. В естественном свете направление возмущений электрического поля $\vec{E}_N(t,z)$ световой волны хаотически изменяется во времени t. В течение времени когерентности τ_c волны ее поляризация – линейная, круговая и эллиптическая с той или иной ориентацией осей эллипса, сохраняется в некоторой степени, но изменяется случайным образом по истечении этого времени. Время когерентности света τ_c мало по сравнению с временами наблюдений $\tau : \tau = \tau_c \cdot (10^5 \div 10^{14})$. Поэтому за время наблюдения произойдет множество смен всевозможных состояний поляризаций возмущений волны. Это эквивалентно тому, что вектор возмущения электрического поля $\vec{E}_N(t)$ за время наблюдения имеет всевозможные направления. Угол α между вектором \vec{E}_N и каким либо фиксированными направлением будет случайной функцией времени $\alpha(t)$ с равновероятными значениями в интервале $0 \div 360^\circ$.

Через поляроид проходят возмущения E_1 , величина которых определяется проекцией вектора возмущений \vec{E}_N на ось пропускания поляроида (рис.7):

$$E_1(t) = E_N(t) \cdot \cos(\alpha(t)). \tag{2}$$

Рис.7. Прохождение естественного света через линейный поляризатор – поляроид: Р – поляроид, О – О' – ось пропускания поляроида, \vec{E}_N - вектор возмущений в падающем на поляроид естественном свете, \vec{E}_1 - вектор возмущений в прошедшей линейно поляризованной волне света

Интенсивность возмущений волны света I пропорциональна среднему по времени квадрату возмущений: $I \sim \langle E^2(t) \rangle$. Поэтому для интенсивности I_1 света, прошедшего через поляризатор следует записать:

$$I_1 = \left\langle E_1^2(t) \right\rangle_{\tau} = \left\langle E_N^2(t) \cdot \cos^2 \alpha(t) \right\rangle_{\tau} = \left\langle E_N^2(t) \right\rangle_{\tau} \cdot \left\langle \cos^2 \alpha(t) \right\rangle_{\tau} = I_N \cdot \frac{1}{2}, \tag{3}$$

где $I_N = \langle E_N^2(t) \rangle_{\tau}$ - интенсивность падающего на поляризатор естественного света, угловые скобки $\langle ... \rangle_{\tau}$ означают операцию усреднения во времени, которую в эксперименте выполняет фотоприемник в силу своей инерционности временной реакции на световые возмущения и

которую математически можно записать в виде: $\langle ... \rangle_{\tau} = \frac{1}{\tau} \int_{0} ... dt$.

Таким образом, интенсивность I_1 линейно поляризованного света, вышедшего из поляризатора, равна половине интенсивности I_N падающего на поляроид естественного света:

$$I_1 = \frac{1}{2} I_N \ . \tag{4}$$

Направление колебаний в вышедшей волне $\vec{E}_1(t,z)$ совпадает с осью пропускания поляризатора O – O'. Интенсивность этой волны, определяемой (4), не зависит от ориентации оси пропускания поляроида – от угловой ориентации поляроида.

При падении на поляризатор линейно поляризованного света через поляризатор без поглощения в нем пройдут только возмущения с направлением вдоль оси пропускания поляризатора. Величина этих возмущений $|\vec{E}_1|$, включая их амплитуду, определяется проекцией вектора возмущений \vec{E}_P падающего света на ось пропускания O–O' (рис.8). Как и для других состояний поляризаций, рассмотренных выше, величину возмущений в волне, прошедшей поляризатор, можно записать в следующем виде:

$$E_1(t) = E_P(t) \cdot \cos(\alpha) \tag{5}$$

где α - неизменный во времени угол между направлением возмущений в линейно поляризованной падающей волне и осью пропускания O-O' поляризатора (рис.8).

Рис.8. Прохождение линейно поляризованного света через поляроид: Р – поляроид, О – О' – ось пропускания поляроида, \vec{E}_P - вектор возмущений в падающем на поляроид линейно поляризованном свете, \vec{E}_1 - вектор возмущений в прошедшей линейно поляризованной волне света, α - угол между направлением поляризации падающего пучка света и осью пропускания поляроида

В силу линейной поляризации падающего света угол α не изменяется во времени, как это происходит при всех других состояниях поляризации. Это влияет на величину интенсивности I_1 прошедшего через поляризатор света. Действительно, для интенсивности прошедшего света можем записать следующие уравнения

$$I_1 = \left\langle E_1^2(t) \right\rangle = \left\langle \left[E_P(t) \cdot \cos(\alpha) \right]^2 \right\rangle = \left\langle E_P^2(t) \cdot \cos^2(\alpha) \right\rangle = \left\langle E_P^2(t) \right\rangle \cdot \cos^2(\alpha) = I_P \cdot \cos^2(\alpha), \quad (6)$$

где угловые скобки $\langle ... \rangle$, как и выше, обозначают усреднение во времени, обусловленное временной инерционностью фотодетектора, $I_P = \langle E_P^2(t) \rangle$ - интенсивность падающего света: $I_P = \langle E_P^2(t) \rangle = \langle E_{P0}^2(t) \cdot \cos^2(\omega t) \rangle = \langle E_{P0}^2(t) \rangle \cdot \langle \cos^2(\omega t) \rangle = \langle E_{P0}^2(t) \rangle \cdot 0.5$, здесь $E_{P0}(t)$ и ω -

амплитуда и циклическая частота возмущений падающей волны света.

Таким образом, в итоге, для I₁ получаем следующее уравнение:

$$I_1 = I_P \cdot \cos^2(\alpha), \tag{7}$$

которое показывает зависимость интенсивности от ориентации оси пропускания поляризатора относительно направления колебаний в падающем линейно поляризованном свете.

Уравнение (7) носит название закона Малюса – французского ученого¹, впервые с физической точки зрения и математически установившего закон зависимости интенсивности прошедшего через поляризатор линейно поляризованного света от ориентации поляризатора.

Оптическая система для наблюдения проявления закона Малюса (рис.9) включает в себя источник неполяризованного света и последовательно установленные друг за другом первый поляризатор P1, преобразующий естественный свет в линейно поляризованный, а затем второй поляризатор P2, на который падает уже линейно поляризованный свет.

Для большей наглядности представления о взаимной ориентации осей пропускания поляроидов и векторов возмущений световых волн в пространстве после этих поляризаторов на рис. 10 показан вид с расположением этих осей и векторов возмущений при взгляде навстречу распространения луча света через оптическую систему.

В схеме на рис.9 закон Малюса реализуется при прохождении света не через первый поляризатор, а через второй. Поэтому этот закон должен быть записан в следующих обозначениях интенсивностей:

$$I_2 = I_1 \cdot \cos^2(\alpha), \tag{8}$$

где I_1 - интенсивность линейно поляризованного света, прошедшего первый поляроид P1 и падающего на второй поляроид P2, I_2 - интенсивность линейно поляризованного света, прошедшего второй поляроид P2, угол α - угол между осями пропускания поляроидов P1 и P2 (см. рис.9 и 10).

¹ Этьен Луи Малюс (фр. Étienne Louis Malus) (23.06.1775 - 23.02.1812) - французский инженер, физик, математик. Открыл явление поляризации света и придумал название этому явлению от слова «полюс», полагая, как и Ньютон, что свет - это поток частиц (корпускул), имеющих полюсы, как магниты, которые у разных частиц в естественном свете беспорядочно ориентированы, а в поляризованном свете частицы оказываются отсортированными с определенным направлением полюсов. Создал теорию двойного лучепреломления света в кристаллах, открыл закон об интенсивности поляризованного света при прохождении через поляризатор, названный его именем.

Рис.9. Прохождение света через два последовательно установленных линейных поляризатора: S – источник естественного света, P1 и P2 – поляроиды, O1–O1' и O2–O2' - оси пропускания первого и второго поляроидов, \vec{E}_x и \vec{E}_y - векторы возмущений в естественном свете, \vec{E}_1 - вектор возмущений в вышедшем из первого поляроида линейно поляризованном свете, \vec{E}_2 -

вектор возмущений в вышедшем из второго поляронда линейно поляризованном свете, 22 вектор возмущений в вышедшем из второго поляроида линейно поляризованном свете.

Рис.10. Взаимная ориентация осей пропускания поляроидов и векторов возмущений линейно поляризованного света в оптической системе с двумя последовательно установленными поляроидами по ходу распространения света от источника к наблюдателю (фотодетектору): Р1 и Р2 – поляроиды, O1–O1' и O2–O2' - оси пропускания первого и второго поляроидов, \vec{E}_1 - вектор возмущений в вышедшем из первого поляроида линейно поляризованном свете и падающем на второй поляроид, \vec{E}_2 - вектор возмущений в вышедшем из второго поляроида линейно поляризованном свете.

Интенсивность I_1 света, прошедшего первый поляроид, определяется соотношением (8), $I_1 = 0.5I_N$, где I_N - интенсивность естественного света, падающего на первый поляроид. Принимая это во внимание для интенсивности света, прошедшего оба поляризатора, получаем выражение

$$I_2 = \frac{1}{2} I_N \cdot \cos^2(\alpha) , \qquad (9)$$

в котором не учитываются потери света при отражении от граней поляроидов.

Частично линейно поляризованный свет

Частично линейно поляризованный свет можно рассматривать как суперпозицию двух частей всего пучка света, одна из которых полностью поляризованное излучение, а вторая полностью неполяризованное излучение - естественный свет. Частично поляризованный свет получается, например, при отражении естественного пучка света от границы раздела двух диэлектрических сред, при молекулярном рассеянии солнечного света в атмосфере, при рассеянии поляризованного света, проходящего через оптически неоднородную среду.

Для характеристики частично поляризованного света вводится величина, которая называется степенью поляризации *P* светового излучения:

$$P = \frac{I_p}{I_{\Sigma}} , \qquad (10)$$

где I_p - интенсивность полностью поляризованной составляющей излучения, I_{Σ} - интенсивность всего светового излучения. Очевидно, что

$$0 \le P \le 1 \tag{11}$$

Степень поляризации P = 1 соответствует случаю полностью поляризованной волны, а P = 0 - полностью неполяризованному излучению.

Для определения степени поляризации света в общем случае необходима оптическая система, в которой основными элементами являются поляризаторы и фазовые пластинки. Однако для оценки величины P частично линейно поляризованного света можно использовать только один поляризационный элемент – линейный поляризатор. Вращая его вокруг оптической оси пучка света так, что при одном положении оси пропускания поляризатора интенсивность света, прошедшего через поляризатор, принимает максимальное значение I_{max} , а при другом положении, ортогональном первому, минимальное значение I_{min} . С помощью этих величин степень поляризации можно определить с помощью следующего выражения:

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \,. \tag{12}$$

Максимальное значение степени поляризации, P = 1 - полная линейная поляризация, имеет место при $I_{min} = 0$, а минимальное P = 0 - отсутствие поляризации - естественный свет, при $I_{min} = I_{max}$. Промежуточные значения 0 < P < 1 соответствуют состоянию частичной поляризации пучка света.

Для интенсивности света, представляя его в виде суммы естественного и линейно поляризованного излучения, очевидно, можно записать уравнение

$$I_{\Sigma} = I_N + I_P , \qquad (13)$$

где I_{Σ} - полная интенсивность, I_N - интенсивность естественного света, I_P - интенсивность линейно поляризованного света.

Интенсивность колебаний света $I(\alpha)$, происходящих только в некотором одном направлении, составляющем угол α с направлением колебаний в линейно поляризованной компоненте, определяется выражением

$$I(\alpha) = I_N \frac{1}{2} + I_P \cdot \cos^2(\alpha) .$$
⁽¹⁴⁾

Данное выражение, фактически, определяет интенсивность света, прошедшего линейный поляризатор – поляроид, с осью пропускания, составляющей угол α с направлением колебаний в линейно поляризованной компоненте падающего на поляроид частично поляризованного света. Действительно, первое слагаемое в (14) определяет интенсивность естественной компоненты прошедшего света в соответствие с полученными выше уравнениями (1) и (4). Второе слагаемое в (14) определяет интенсивность прошедшей поляроид линейно поляризованной компоненты в соответствие с законом Малюса (8) и (9).

На рис. 11 представлены в соответствие с уравнением (14) графики теоретической зависимости $I(\alpha)$ света при различной его степени линейной поляризации P при условии постоянства максимального значения интенсивности $I_{max} = 0.5I_N + I_P = const$, что определяет изменение соотношения интенсивностей I_N и I_P для света с разными величинами степени поляризации P.

Рис. 11. Графики интенсивности прошедшего поляроид света при различной степени поляризации *P* падающего на поляроид света в зависимости от угловой ориентации оси пропускания поляроида: 1 - естественный падающий свет (*P* = 0), 2 и 3 – частично линейно поляризованный света (*P* = 0.11 и *P* = 0.33), 4 - полностью линейно поляризованный свет (*P* = 1)

При угле α = 0 имеет место максимальная интенсивность колебаний частично поляризованного света – максимальная интенсивность прошедшего поляроид света,

$$I(\alpha = 0) = I_N \frac{1}{2} + I_P = I_{max} .$$
(15)

При $\alpha = 90^{\circ}$ имеет место минимальная интенсивность колебаний света и соответственно минимальная интенсивность прошедшего поляроид света

$$I(\alpha = 90^{\circ}) = I_N \frac{1}{2} = I_{min} .$$
 (16)

Для степени поляризации по формуле (11) получаем

$$P = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{\left(I_N \frac{1}{2} + I_P\right) - I_N \frac{1}{2}}{\left(I_N \frac{1}{2} + I_P\right) + I_N \frac{1}{2}} = \frac{I_P}{I_{\Sigma}}$$
(17)

Таким образом, степени поляризации, определяемые выражениями (10) и (12), совпадают.

В эксперименте по определению степени поляризации частично линейно поляризованного света с использованием только поляризатора-анализатора, непосредственно измеряемыми являются следующие величины: (1) интенсивность полного пучка света I_{Σ} , (2) интенсивность естественной компоненты света I_N , определяемой по непосредственно измеренной величине I_{min} , $I_N = 2I_{min}$, (3) максимальное значение интенсивности I_{max} . Величина интенсивности линейно поляризованной компоненты I_P может быть определена с помощью формулы (13) по измеренным значениям I_{Σ} и I_N , то есть $I_P = I_{\Sigma} - I_N$. Или, используя выражение (15), по измеренным величинам I_{max} и I_N определяется $I_P = I_{max} - \frac{1}{2}I_N$. Все эти получаемые в эксперименте величины позволяют установить степень поляризации частично линейно поляризованного света, используя формулы (10) и (12).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Схема экспериментальной установки для исследования закономерности прохождения света через линейные поляризаторы представлена на рис. 12, а на рис. 13 - фотография установки.

Рис.12. Схема экспериментальной установки для исследования закономерности прохождения света через линейные поляризаторы и проверки закона Малюса (а – вид сбоку, б – вид сверху): S – источник света – светодиодная лампа, R – отражатель, P1 – линейный поляризатор – поляроид 1, P2 –линейный поляризатор – поляроид 2, M – поворотное зеркало, вводимое в оптическую систему для визуального наблюдения прохождения света через поляроиды, L – фокусирующая линза, B – бленда фотодетектора, PD – фотодетектор – фотодиод, MA – миллиамперметр с цифровой индикацией показаний, OB – оптическая скамья

Естественный свет от лампы – источника S, проходит через первый линейный поляризатор P1, далее проходит второй линейный поляризатор P2 – анализатор.

В режиме визуального наблюдения прохождения света через два последовательно установленных поляризатора за анализатором устанавливается поворотное зеркало М. Это зеркало отражает прошедший анализатор Р2 свет в направлении наблюдателя.

В режиме фотоэлектрической регистрации света, прошедшего два поляризатора, поворотное зеркало выводится в сторону из оптической системы. Свет, вышедший из анализатора Р2 проходит через линзу L и фокусируется линзой на светочувствительную поверхность фотодетектора PD – кремниевого фотодиода, электрический сигнал которого – сила фототока, измеряется миллиамперметром MA с цифровой индикацией показаний. Для снижения внешней засветки используется черненная цилиндрическая труба – бленда В (рис.12,13).

Рис.13. Фотография экспериментальной установки: S - источник света, P1 – 1-й поляроид, закрепленный в неподвижную оправу, P2 – 2-й поляроид (анализатор), закрепленный в кольцевую оправу с возможностью поворота в собственной плоскости, М – зеркало, вводимое в оптическую систему для визуального наблюдения прохождения света через поляроиды, L – фокусирующая линза, PD – фотодетектор, МА – миллиамперметр с цифровой индикацией показаний, OB – оптическая скамья, RT - рейторы

Поляроид Р2 закреплен в кольцевую оправу с возможностью плавного поворота в собственной плоскости на 360° и более с отсчетом угла поворота по кольцевой шкале в угловых градусах. Поворот поляризатора изменяет угол α между осями пропускания первого и второго поляризаторов, что приводит к изменению интенсивности света, прошедшего через оптическую систему, в соответствии с законом Малюса.

Первый и второй поляризаторы, закрепленные в металлические рамы, установлены в рейторы с возможность их снятия и удаления из оптической системы, что необходимо для измерения с помощью фотодетектора PD интенсивности света, исходящего непосредственно от источника S – светодиодной лампы.

Все геометрические центры оптических элементов системы, включая источник света и фотодетектор, должны находиться на одной прямой – оптической оси системы, а их фронтальные поверхности должны быть параллельны друг другу и перпендикулярны оптической оси системы.

Регистрирующая фотоэлектрическая система, состоящая из фотодиода PD и миллиамперметра MA, работает на основе внутреннего фотоэффекта. Величина электрического тока, возникающего в электрической цепи системы при облучении светом фоточувствительного элемента - фотодиода, линейно зависит от мощности W светового излучения, падающих на приемник. Мощность излучения пропорциональна интенсивности I излучения: W = SI, где S - площадь апертуры фотоприемника. Поэтому показания миллиамперметра пропорциональны величине интенсивности I света, падающего на фотодиод. Таким образом, миллиамперметр показывает значение, пропорциональное интенсивности света, падающего на приемник, в некоторых условных (относительных) единицах.

Порядок выполнения работы

Упражнение 1. Визуальное изучение прохождения света от источника естественного света через два последовательно установленных линейных поляризаторов – поляроидов, при изменении взаимной ориентации осей пропускания поляризаторов.

- 1. Включить источник S естественного света светодиодную лампу.
- 2. Установить (ввести) в пространство между поляризатором-анализатором P2 и линзой L поворотное зеркало M, отражающее световой поток, прошедший через поляризаторы P1 и P2, перпендикулярно оптической оси системы в сторону экспериментатора. Зеркало M установлено на платформу-консоль с возможностью поворота, обеспечивающего введение зеркала в световой поток и отражение его в сторону, или выведения зеркала из оптической системы для прохождения светового потока через линзу L и далее на фотодетектор PD.
- 3. Наблюдать источник света S, отраженный в зеркале М.
- Поворачивая поляризатор-анализатор в собственной плоскости изучить закономерность изменения интенсивности света, прошедшего два поляризатора. Определить угол поворота поляризатора Р2, при котором интенсивность света изменяется от максимального до минимального (почти нулевого) значений.
- Объяснить с физической точки зрения наблюдаемое явление. Составить письменный отчет о наблюдениях и закономерностях наблюдаемого оптического явления.

Упражнение 2. Анализ состояния поляризации естественного света – света непосредственно от источника.

- 1. Поворотное зеркало М должно быть выведено в сторону из оптической системы и не перекрывало световой поток, выходящего из анализатора Р2 и падающего в апертуру линзы L.
- 2. Включить миллиамперметр и снять значение «темнового» тока I_{dc} . За счет внешних источников света (внешней засветки) это значение может быть не равным 0.
- 3. Снять с оптической скамьи поляризатор Р1 и анализатор Р2. Для этого необходимо отвернуть винт на вертикальной стойке рейтора RT, в котором закреплен поляризатор в оправе.
- 4. Включить источник света S и снять показание миллиамперметра, которое будет соответствовать значению интенсивности естественного света I_N непосредственно от источника излучения.
- 5. Поставить в рейтор на оптическую скамью поляризатор Р2 так, чтобы геометрический центр окна поляризатора находился на оптической оси системы совпадал с центрами

линзы L и апертуры фотодетектора PD, а его фронтальная поверхность была перпендикулярна оптической оси системы.

6. Снять показание миллиамперметра *I*₂. При этом должно выполняться следующее приближенное равенство:

$$I_2 - I_{dc} \approx \frac{1}{2} \big(I_N - I_{dc} \big).$$

- 7. Объяснить полученный результат. Объяснить, почему вместо знака «=», стоит знак «≈».
- Вращая поляризатор вокруг оптической оси на 360° или более с шагом 10°, снять показания миллиамперметра I₂(α) в зависимости от угла поворота поляризатора Р2 и занести их в таблицу 1.

	Значение угла ориентации анализатора, α, угловые градусы	Значение фототока, $I_2 - I_{dc}$, отн. ед
1	0	
2	10	
п	360	

Таблица 1. Зависимость значения фототока от угла поворота анализатора

9. Объяснить полученные результаты.

Упражнение 3. Исследование закономерностей прохождения естественного света через систему двух последовательно установленных линейных поляризаторов. Проверка закона Малюса.

- На оптическую скамью в закрепленный на ней рейтер между источником света S и анализатором P2 установить поляризатор P1 (см. рис. 12). Все оптические элементы схемы – источник света S, поляризатор P1, анализатор P2, линза L и фотодиод PD, должны располагаться таким образом, чтобы оптическая ось системы проходила через геометрические центры всех элементов и была перпендикулярна поверхностям элементов.
- 2. Включить миллиамперметр и снять значение «темнового» тока I_{dc} при всех установленных элементов схемы установки.
- 3. Включить источник света S. Путем вращения анализатора P2 установить минимальное показание миллиамперметра MA. Такое положение поляризаторов P1 и P2 соответствует ортогональной взаимной ориентации осей их пропускания поляризатор и анализатор скрещены.
- 4. Поворачивая анализатор P2 от установленного начального положения на 360° по часовой стрелке с шагом 5°, определить по показаниям миллиамперметра, соответствующие зна-

чения интенсивности I_2 света, прошедшего через оптическую систему, в зависимости от угла поворота поляризатора Р2 и занести их в таблицу 2.

Таблица 2. Зависимость значения фототока от угла между
осями пропускания поляризатора и анализатора

	Значение угла ориентации анализатора α, градусы	Значение фототока, I ₂ – I _{dc}
1	0	
2	5	
п	360	

- 5. Построить график зависимости значения фототока $I_2(\alpha) I_{dc}$ от угла α ориентации анализатора P2 относительно поляризатора P1.
- Убедиться, что зависимость фототока I₂(α) от угла α ориентации анализатора Р2 подчиняется закону Малюса (уравнению (9) с учетом интенсивности засветки I_{dc}). Для этого построить график зависимости I₂(α) с использованием (9) совместно с экспериментальным графиком.

После выполнения экспериментальных работ выключить питание источника света и миллиамперметра.

Контрольные вопросы

- 1. Что такое свет? Какова его физическая природа?
- 2. В чем выражается поперечность электромагнитных волн?
- 3. В чем заключается явление поляризации электромагнитных волн?
- 4. Вектор какого из возмущений электромагнитной волны принято считать вектором поляризации?
- 5. Какие виды поляризации световых волн бывают?
- 6. Какие колебания волн называются линейно поляризованными?
- 7. Какие колебания волн называются циркулярно поляризованными?
- 8. Какие колебания волн называются эллиптически поляризованными?
- 9. Какие колебания волн называются хаотически поляризованными?
- 10. Какой свет называют естественным светом? Какое состояние поляризации имеет естественный свет?
- 11. Какой свет называют частично поляризованным?
- 12. Какие волны света называют плоско поляризованными?
- 13. Что такое плоскость поляризации волны? Как она определяется?

- 14. Какая волна называется плоской плоско поляризованной?
- 15. Каким образом получают линейно поляризованный свет?
- 16. Каким способом получают эллиптически и циркулярно поляризованный свет?
- 17. Что такое линейный поляризатор? Какие типы линейных поляризаторов бывают?
- 18. Какова интенсивность света, прошедшего линейный поляризатор, если падающий свет естественный или циркулярно поляризованный?
- 19. Какова интенсивность света, прошедшего линейный поляризатор, если падающий свет линейно поляризованный?
- 20. Какова интенсивность света, прошедшего два последовательно установленных линейных поляризатора, если входящий в такую систему свет естественный и известна его интенсивность?
- 21. В каких случаях поляризатор и анализатор называют скрещенными и параллельными?

Контрольные задачи по тематике лабораторной работы

1. Луч естественного света LB с интенсивностью I_i проходит через две последовательно установленные призмы Николя P_1 и P_2 , главные плоскости которых повернуты друг относительно друга на угол α . Определить интенсивности луча света, прошедшего через первую призму I_1 и прошедшего через обе призмы I_2 . Коэффициент отражения света от внешних граней призмы R, а частичное отражение необыкновенной волны от склеенных граней в призмах не учитывать.

2. Определить интенсивность луча света I_2 , прошедшего последовательно через два поляроида, оси пропускания которых составляют между собой угол $\alpha = 60^{\circ}$. Падающий свет с интенсивностью $I_N = 2 \text{ мBt/мm}^2$ линейно поляризован с направлением колебаний, составляющим угол $\theta = 30^{\circ}$ с осью пропускания первого поляроида. Отражение света от граней поляроидов не учитывать.

- 3. Определить интенсивность луча света I_2 , прошедшего через два поляроида, если между их осями пропускания угол $\alpha = 60^\circ$. Интенсивность падающего естественного света $I_i = 6 \text{ мBt/mm}^2$. Отражением от граней поляроидов пренебречь.
- 4. Определить интенсивность луча света I_2 , прошедшего через два поляроида, оси пропускания которых составляют между собой угол $\alpha = 30^\circ$. Падающий свет цирку-

лярно поляризован и имеет интенсивность $I_i = 150 \text{ MBt/cm}^2$. Отражением от граней поляроидов пренебречь.

5. Естественный свет с интенсивностью $I_N = 50 \text{ MBt/cm}^2$ падает на стопу из 7 поляроидов, оси пропускания которых повернуты друг относительно друга на одинаковый угол $\Delta \alpha = 15^\circ$. Определить интенсивность I_7 прошедшего через всю стопу поляроидов луча света и его поляризацию, если ось пропускания первого поляроида P_1 вертикальна. Отражение света от граней пластины не учитывать.

6. Частично линейно-поляризованный пучок света падает на линейный поляризатор – поляроид, и проходит через его. При повороте поляроида в собственной плоскости на 360° наблюдается периодическое изменение интенсивности прошедшего света с максимальными I_{max} и минимальными I_{min} значениями интенсивности этого света при определенных положениях поляроида. При повороте поляроида на 45° из положения, соответствующего максимуму интенсивности прошедшего света, интенсивность света уменьшается до величины, равной 3/4 максимального значения. Найти степень линейной поляризации падающего на поляроид пучка света, определяемую по формулам: (1) $P = (I_{max} - I_{min})/(I_{max} + I_{min})$ и (2) $P = I_P/I_{\Sigma}$, где I_P - интенсивность полностью линейно поляризованной части пучка света, I_{Σ} - полная интенсивность падающего пучка света.

Литература

- 1. Бутиков Е.И. Оптика. Издательство "Лань". 2012. 3-е изд. 608 с.
- 2. Стафеев С.К., Боярский К.К., Башнина Г.Л. Основы оптики. Издательство: С.-П. Изд-во «Питер», 2006. 336 с.
- 3. Савельев И.В. Курс общей физики. В 3-х т. Т.2. Электричество и магнетизм. Волны. Оптика. 9-е изд. Уч-е пос-е в 3х томах/И.В. Савельев; М: Астрель АСТ 2005, 2007 – 336 с:

Интернет ресурсы

- 1. Бутиков, Е.И. Оптика: учебное пособие / Е. И. Бутиков. 3-е изд., доп. Санкт-Петербург: Лань, 2021. — 608 с. — ISBN 978-5-8114-1190-0. — Текст: электронный // Лань: электронно-библиотечная система. — URL: <u>https://e.lanbook.com/book/168365</u>
- Стафеев, С.К. Основы оптики: учебное пособие / С.К. Стафеев, К.К. Боярский, Г.Л. Башнина. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2021. 336 с. ISBN 978-5-8114-1495-6. Текст : электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/169379

- 3. Ландсберг, Г.С. Оптика: учебное пособие / Г.С. Ландсберг. 7-е изд., стереот. Москва: ФИЗМАТЛИТ, 2021. 852 с. ISBN 978-5-9221-1742-5. Текст : электронный // Лань: электронно-библиотечная система. URL: <u>https://e.lanbook.com/book/185678</u>
- 4. Калитеевский, Н.И. Волновая оптика: учебное пособие / Н.И. Калитеевский. 5-е изд. Санкт-Петербург: Лань, 2021. 480 с. ISBN 978-5-8114-0666-1. Текст : электронный // Лань : электронно-библиотечная система. URL: <u>https://e.lanbook.com/book/167685</u>
- 5. Рябухо, В.П. Волновая оптика. Сборник задач: учебное пособие для вузов / В. П. Рябухо. Санкт-Петербург: Лань, 2022. 156 с. ISBN 978-5-8114-8870-4. Текст: электронный // Лань: электронно-библиотечная система. URL: <u>https://e.lanbook.com/book/200372</u>